用于主题提取的分支组合PLSA

Jiali Lin, Zhiqiang Wei, Z. Li
{"title":"用于主题提取的分支组合PLSA","authors":"Jiali Lin, Zhiqiang Wei, Z. Li","doi":"10.14257/ijdta.2017.10.1.14","DOIUrl":null,"url":null,"abstract":"Li (lizhen0130@gmail.com) Abstract With the developing of the Internet technology, the information on the network is expanding at the speed of geometric progression. Facing such vast network information, quickly extracting the important information becomes the urgent needs. The subject extraction model is a good solution to the problem. In this paper, a new model based on Probabilistic Latent Semantic Analysis (PLSA) is proposed which is called Branch-combined PLSA (BPLSA). BPLSA divides training data into two subsets, and trains subsets separately first, then the global training is implemented. At the same time, Message Passing Interface (MPI) is used for parallel computing to speed up the proposed method. Through the parallelization of the BPLSA, the efficiency is","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"21 1","pages":"149-162"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branch-combined PLSA for Topic Extraction\",\"authors\":\"Jiali Lin, Zhiqiang Wei, Z. Li\",\"doi\":\"10.14257/ijdta.2017.10.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Li (lizhen0130@gmail.com) Abstract With the developing of the Internet technology, the information on the network is expanding at the speed of geometric progression. Facing such vast network information, quickly extracting the important information becomes the urgent needs. The subject extraction model is a good solution to the problem. In this paper, a new model based on Probabilistic Latent Semantic Analysis (PLSA) is proposed which is called Branch-combined PLSA (BPLSA). BPLSA divides training data into two subsets, and trains subsets separately first, then the global training is implemented. At the same time, Message Passing Interface (MPI) is used for parallel computing to speed up the proposed method. Through the parallelization of the BPLSA, the efficiency is\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"21 1\",\"pages\":\"149-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/ijdta.2017.10.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijdta.2017.10.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网技术的发展,网络上的信息正以几何级数的速度增长。面对如此庞大的网络信息,快速提取重要信息成为迫切需要。主题抽取模型很好地解决了这一问题。本文提出了一种基于概率潜在语义分析(PLSA)的新模型,即分支组合语义分析(BPLSA)。BPLSA将训练数据分成两个子集,先对子集进行单独训练,然后进行全局训练。同时,采用消息传递接口(Message Passing Interface, MPI)进行并行计算,提高了算法的运行速度。通过BPLSA的并行化,效率为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branch-combined PLSA for Topic Extraction
Li (lizhen0130@gmail.com) Abstract With the developing of the Internet technology, the information on the network is expanding at the speed of geometric progression. Facing such vast network information, quickly extracting the important information becomes the urgent needs. The subject extraction model is a good solution to the problem. In this paper, a new model based on Probabilistic Latent Semantic Analysis (PLSA) is proposed which is called Branch-combined PLSA (BPLSA). BPLSA divides training data into two subsets, and trains subsets separately first, then the global training is implemented. At the same time, Message Passing Interface (MPI) is used for parallel computing to speed up the proposed method. Through the parallelization of the BPLSA, the efficiency is
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信