用拉普拉斯变换刻画紧族

IF 0.9 4区 数学 Q2 Mathematics
M. Krukowski
{"title":"用拉普拉斯变换刻画紧族","authors":"M. Krukowski","doi":"10.5186/aasfm.2020.4553","DOIUrl":null,"url":null,"abstract":"In 1985, Robert L. Pego characterized compact families in $L^2(\\reals)$ in terms of the Fourier transform. It took nearly 30 years to realize that Pego's result can be proved in a wider setting of locally compact abelian groups (works of Gorka and Kostrzewa). In the current paper, we argue that the Fourier transform is not the only integral transform that is efficient in characterizing compact families and suggest the Laplace transform as a possible alternative.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Characterizing compact families via the Laplace transform\",\"authors\":\"M. Krukowski\",\"doi\":\"10.5186/aasfm.2020.4553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1985, Robert L. Pego characterized compact families in $L^2(\\\\reals)$ in terms of the Fourier transform. It took nearly 30 years to realize that Pego's result can be proved in a wider setting of locally compact abelian groups (works of Gorka and Kostrzewa). In the current paper, we argue that the Fourier transform is not the only integral transform that is efficient in characterizing compact families and suggest the Laplace transform as a possible alternative.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4553\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4553","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

1985年,Robert L. Pego用傅里叶变换描述了L^2(\real)$中的紧族。人们花了将近30年的时间才意识到Pego的结果可以在更广泛的局部紧化阿贝尔群(Gorka和Kostrzewa的作品)中得到证明。在当前的论文中,我们认为傅里叶变换并不是唯一有效表征紧族的积分变换,并建议拉普拉斯变换作为一种可能的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing compact families via the Laplace transform
In 1985, Robert L. Pego characterized compact families in $L^2(\reals)$ in terms of the Fourier transform. It took nearly 30 years to realize that Pego's result can be proved in a wider setting of locally compact abelian groups (works of Gorka and Kostrzewa). In the current paper, we argue that the Fourier transform is not the only integral transform that is efficient in characterizing compact families and suggest the Laplace transform as a possible alternative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信