基于时间尺度分解的电动汽车充电站分层结构

Ke Ma, Le Xie, P. Kumar
{"title":"基于时间尺度分解的电动汽车充电站分层结构","authors":"Ke Ma, Le Xie, P. Kumar","doi":"10.1109/SmartGridComm.2014.7007725","DOIUrl":null,"url":null,"abstract":"We present a layered decomposition approach that permits a holistic solution to the storage, scheduling and pricing problems of Electric Vehicle (EV) Charging Stations. By exploiting time scales, these problems can be decomposed and solved layer by layer. In the top layer, at a long time scale, with grid power price and renewable energy represented by their long-term averages, and total demand following the price-demand curve, the optimal pricing scheme is obtained. The real-time charging and discharging operation of the battery, is considered in the middle layer. With average number of customers arriving determined by the price set at the top layer, the middle layer determines the optimal amounts of energy to buy from the grid and to use for charging. At the bottom layer, the scheduling policy of EV charging is determined while satisfying the total battery consumption obtained at the middle layer. We illustrate the algorithms with a simple example using ERCOT data, demonstrating the implementability of the architectural solution in real-time market operation of an EV charging station. Simulations show that the architectural decomposition does not incur any significant cost penalty.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"6 1","pages":"674-679"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A layered architecture for EV charging stations based on time scale decomposition\",\"authors\":\"Ke Ma, Le Xie, P. Kumar\",\"doi\":\"10.1109/SmartGridComm.2014.7007725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a layered decomposition approach that permits a holistic solution to the storage, scheduling and pricing problems of Electric Vehicle (EV) Charging Stations. By exploiting time scales, these problems can be decomposed and solved layer by layer. In the top layer, at a long time scale, with grid power price and renewable energy represented by their long-term averages, and total demand following the price-demand curve, the optimal pricing scheme is obtained. The real-time charging and discharging operation of the battery, is considered in the middle layer. With average number of customers arriving determined by the price set at the top layer, the middle layer determines the optimal amounts of energy to buy from the grid and to use for charging. At the bottom layer, the scheduling policy of EV charging is determined while satisfying the total battery consumption obtained at the middle layer. We illustrate the algorithms with a simple example using ERCOT data, demonstrating the implementability of the architectural solution in real-time market operation of an EV charging station. Simulations show that the architectural decomposition does not incur any significant cost penalty.\",\"PeriodicalId\":6499,\"journal\":{\"name\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"6 1\",\"pages\":\"674-679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2014.7007725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种分层分解方法,允许整体解决电动汽车(EV)充电站的存储,调度和定价问题。通过利用时间尺度,这些问题可以被分解并逐层解决。在顶层,在长时间尺度下,以电网电价和可再生能源电价的长期平均值表示,总需求服从价格-需求曲线,得到最优定价方案。中间层考虑电池的实时充放电操作。顶层的价格决定了到达的平均客户数量,中间层决定了从电网购买和用于充电的最佳电量。在底层,在满足中间层得到的电池总消耗的情况下,确定电动汽车充电的调度策略。我们用一个简单的例子来说明算法,使用ERCOT数据,证明了架构解决方案在电动汽车充电站实时市场运行中的可实现性。仿真表明,架构分解不会导致任何显著的成本损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A layered architecture for EV charging stations based on time scale decomposition
We present a layered decomposition approach that permits a holistic solution to the storage, scheduling and pricing problems of Electric Vehicle (EV) Charging Stations. By exploiting time scales, these problems can be decomposed and solved layer by layer. In the top layer, at a long time scale, with grid power price and renewable energy represented by their long-term averages, and total demand following the price-demand curve, the optimal pricing scheme is obtained. The real-time charging and discharging operation of the battery, is considered in the middle layer. With average number of customers arriving determined by the price set at the top layer, the middle layer determines the optimal amounts of energy to buy from the grid and to use for charging. At the bottom layer, the scheduling policy of EV charging is determined while satisfying the total battery consumption obtained at the middle layer. We illustrate the algorithms with a simple example using ERCOT data, demonstrating the implementability of the architectural solution in real-time market operation of an EV charging station. Simulations show that the architectural decomposition does not incur any significant cost penalty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信