用NewtonÃⅱÂÂs算法求解2-Hessian方程

Haj Ea, H. Khalil, M. Hossein
{"title":"用NewtonÃⅱÂÂs算法求解2-Hessian方程","authors":"Haj Ea, H. Khalil, M. Hossein","doi":"10.4172/21689679.1000393","DOIUrl":null,"url":null,"abstract":"The elliptic 2-Hessian equation is a fully nonlinear partial differential equation that is related, for example, to intrinsic curvature for three dimensional manifolds. We solve numerically this equation with periodic boundary condition and with Dirichlet boundary condition using a Newton’s algorithm. We verify numerically, by introducing finite difference schemes, the convergence of the algorithm which is obtained in few iterations.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of the 2-Hessian Equation by a NewtonâÂÂs Algorithm\",\"authors\":\"Haj Ea, H. Khalil, M. Hossein\",\"doi\":\"10.4172/21689679.1000393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The elliptic 2-Hessian equation is a fully nonlinear partial differential equation that is related, for example, to intrinsic curvature for three dimensional manifolds. We solve numerically this equation with periodic boundary condition and with Dirichlet boundary condition using a Newton’s algorithm. We verify numerically, by introducing finite difference schemes, the convergence of the algorithm which is obtained in few iterations.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/21689679.1000393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/21689679.1000393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

椭圆型2-Hessian方程是一个完全非线性的偏微分方程,它与三维流形的固有曲率有关。本文用牛顿算法在周期边界条件和狄利克雷边界条件下对该方程进行了数值求解。通过引入有限差分格式,在数值上验证了该算法的收敛性,且迭代次数少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of the 2-Hessian Equation by a NewtonâÂÂs Algorithm
The elliptic 2-Hessian equation is a fully nonlinear partial differential equation that is related, for example, to intrinsic curvature for three dimensional manifolds. We solve numerically this equation with periodic boundary condition and with Dirichlet boundary condition using a Newton’s algorithm. We verify numerically, by introducing finite difference schemes, the convergence of the algorithm which is obtained in few iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信