基于生物启发优化的物联网入侵检测与防御系统特征选择

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Richa Singh, R. Ujjwal
{"title":"基于生物启发优化的物联网入侵检测与防御系统特征选择","authors":"Richa Singh, R. Ujjwal","doi":"10.59035/oexi6498","DOIUrl":null,"url":null,"abstract":"Nowadays smart Internet of Things (IoT) devices are used briskly, and these devices communicate with each other via wireless medium. However, this increase in IoT devices has resulted in a rise of security issues associated with the IoT system. Therefore, an intrusion detection and prevention system (IDPS) is used to locate and report any malicious activity. The IDPS's feature selection (FS) task is necessary to improve the data quality and decrease the data used for classifying intrusive traffic. Therefore, this paper proposes a novel FS method that hybridizes improved salp swarm algorithm and harris hawk optimization algorithm. The XGBoost classifier is used for classifying reduced network traffic. Proposed system demonstrates high accuracy and low computation time, surpassing other related approaches used for the IDPS feature selection task.","PeriodicalId":42317,"journal":{"name":"International Journal on Information Technologies and Security","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature selection using bio-inspired optimization for IoT intrusion detection and prevention system\",\"authors\":\"Richa Singh, R. Ujjwal\",\"doi\":\"10.59035/oexi6498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays smart Internet of Things (IoT) devices are used briskly, and these devices communicate with each other via wireless medium. However, this increase in IoT devices has resulted in a rise of security issues associated with the IoT system. Therefore, an intrusion detection and prevention system (IDPS) is used to locate and report any malicious activity. The IDPS's feature selection (FS) task is necessary to improve the data quality and decrease the data used for classifying intrusive traffic. Therefore, this paper proposes a novel FS method that hybridizes improved salp swarm algorithm and harris hawk optimization algorithm. The XGBoost classifier is used for classifying reduced network traffic. Proposed system demonstrates high accuracy and low computation time, surpassing other related approaches used for the IDPS feature selection task.\",\"PeriodicalId\":42317,\"journal\":{\"name\":\"International Journal on Information Technologies and Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information Technologies and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59035/oexi6498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Technologies and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59035/oexi6498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

如今,智能物联网(IoT)设备被广泛使用,这些设备通过无线媒介相互通信。然而,物联网设备的增加导致了与物联网系统相关的安全问题的增加。因此,需要使用入侵检测和防御系统(IDPS)来定位和报告任何恶意活动。IDPS的特征选择(FS)任务是提高数据质量和减少入侵流量分类所必需的。为此,本文提出了一种将改进的salp swarm算法与harris hawk优化算法相结合的FS算法。XGBoost分类器用于对减少的网络流量进行分类。该系统具有较高的准确率和较低的计算时间,优于其他用于IDPS特征选择任务的相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection using bio-inspired optimization for IoT intrusion detection and prevention system
Nowadays smart Internet of Things (IoT) devices are used briskly, and these devices communicate with each other via wireless medium. However, this increase in IoT devices has resulted in a rise of security issues associated with the IoT system. Therefore, an intrusion detection and prevention system (IDPS) is used to locate and report any malicious activity. The IDPS's feature selection (FS) task is necessary to improve the data quality and decrease the data used for classifying intrusive traffic. Therefore, this paper proposes a novel FS method that hybridizes improved salp swarm algorithm and harris hawk optimization algorithm. The XGBoost classifier is used for classifying reduced network traffic. Proposed system demonstrates high accuracy and low computation time, surpassing other related approaches used for the IDPS feature selection task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信