逆广义贝塞尔多项式及其零的计算

IF 0.9 Q3 MATHEMATICS, APPLIED
T. Mark Dunster, Amparo Gil, Diego Ruiz-Antolín, Javier Segura
{"title":"逆广义贝塞尔多项式及其零的计算","authors":"T. Mark Dunster,&nbsp;Amparo Gil,&nbsp;Diego Ruiz-Antolín,&nbsp;Javier Segura","doi":"10.1002/cmm4.1198","DOIUrl":null,"url":null,"abstract":"<p>It is well known that one of the most relevant applications of the reverse Bessel polynomials <math>\n <mrow>\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow></math> is filter design. In particular, the poles of the transfer function of a Bessel filter are basically the zeros of <math>\n <mrow>\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow></math>. In this article we discuss an algorithm to compute the zeros of reverse generalized Bessel polynomials <math>\n <mrow>\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>z</mi>\n <mo>;</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow></math>. A key ingredient in the algorithm will be a method to compute the polynomials. For this purpose, we analyze the use of recurrence relations and asymptotic expansions in terms of elementary functions to obtain accurate approximations to the polynomials. The performance of all the numerical approximations will be illustrated with examples.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1198","citationCount":"2","resultStr":"{\"title\":\"Computation of the reverse generalized Bessel polynomials and their zeros\",\"authors\":\"T. Mark Dunster,&nbsp;Amparo Gil,&nbsp;Diego Ruiz-Antolín,&nbsp;Javier Segura\",\"doi\":\"10.1002/cmm4.1198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well known that one of the most relevant applications of the reverse Bessel polynomials <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow></math> is filter design. In particular, the poles of the transfer function of a Bessel filter are basically the zeros of <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow></math>. In this article we discuss an algorithm to compute the zeros of reverse generalized Bessel polynomials <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>;</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow></math>. A key ingredient in the algorithm will be a method to compute the polynomials. For this purpose, we analyze the use of recurrence relations and asymptotic expansions in terms of elementary functions to obtain accurate approximations to the polynomials. The performance of all the numerical approximations will be illustrated with examples.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1198\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,反贝塞尔多项式θ n (z)最相关的应用之一是滤波器设计。特别地,贝塞尔滤波器的传递函数的极点基本上是θ n (z)的零点。本文讨论了一种计算逆广义贝塞尔多项式θ n (z;A)。该算法的一个关键要素是计算多项式的方法。为此,我们分析了用初等函数的递归关系和渐近展开式来获得多项式的精确逼近。所有数值近似的性能将用实例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computation of the reverse generalized Bessel polynomials and their zeros

Computation of the reverse generalized Bessel polynomials and their zeros

It is well known that one of the most relevant applications of the reverse Bessel polynomials θ n ( z ) is filter design. In particular, the poles of the transfer function of a Bessel filter are basically the zeros of θ n ( z ) . In this article we discuss an algorithm to compute the zeros of reverse generalized Bessel polynomials θ n ( z ; a ) . A key ingredient in the algorithm will be a method to compute the polynomials. For this purpose, we analyze the use of recurrence relations and asymptotic expansions in terms of elementary functions to obtain accurate approximations to the polynomials. The performance of all the numerical approximations will be illustrated with examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信