CASIE—以道德和可信赖的方式为医疗保健提供计算影响和社会智能

Laurentiu A. Vasiliu, Keith Cortis, Ross McDermott, Aphra Kerr, Arne Peters, Marc Hesse, J. Hagemeyer, Tony Belpaeme, John McDonald, Rudi C. Villing, A. Mileo, Annalina Capulto, Michael Scriney, Sascha S. Griffiths, A. Koumpis, Brian Davis
{"title":"CASIE—以道德和可信赖的方式为医疗保健提供计算影响和社会智能","authors":"Laurentiu A. Vasiliu, Keith Cortis, Ross McDermott, Aphra Kerr, Arne Peters, Marc Hesse, J. Hagemeyer, Tony Belpaeme, John McDonald, Rudi C. Villing, A. Mileo, Annalina Capulto, Michael Scriney, Sascha S. Griffiths, A. Koumpis, Brian Davis","doi":"10.1515/pjbr-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract This article explores the rapidly advancing innovation to endow robots with social intelligence capabilities in the form of multilingual and multimodal emotion recognition, and emotion-aware decision-making capabilities, for contextually appropriate robot behaviours and cooperative social human–robot interaction for the healthcare domain. The objective is to enable robots to become trustworthy and versatile social robots capable of having human-friendly and human assistive interactions, utilised to better assist human users’ needs by enabling the robot to sense, adapt, and respond appropriately to their requirements while taking into consideration their wider affective, motivational states, and behaviour. We propose an innovative approach to the difficult research challenge of endowing robots with social intelligence capabilities for human assistive interactions, going beyond the conventional robotic sense-think-act loop. We propose an architecture that addresses a wide range of social cooperation skills and features required for real human–robot social interaction, which includes language and vision analysis, dynamic emotional analysis (long-term affect and mood), semantic mapping to improve the robot’s knowledge of the local context, situational knowledge representation, and emotion-aware decision-making. Fundamental to this architecture is a normative ethical and social framework adapted to the specific challenges of robots engaging with caregivers and care-receivers.","PeriodicalId":90037,"journal":{"name":"Paladyn : journal of behavioral robotics","volume":"105 1","pages":"437 - 453"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CASIE – Computing affect and social intelligence for healthcare in an ethical and trustworthy manner\",\"authors\":\"Laurentiu A. Vasiliu, Keith Cortis, Ross McDermott, Aphra Kerr, Arne Peters, Marc Hesse, J. Hagemeyer, Tony Belpaeme, John McDonald, Rudi C. Villing, A. Mileo, Annalina Capulto, Michael Scriney, Sascha S. Griffiths, A. Koumpis, Brian Davis\",\"doi\":\"10.1515/pjbr-2021-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article explores the rapidly advancing innovation to endow robots with social intelligence capabilities in the form of multilingual and multimodal emotion recognition, and emotion-aware decision-making capabilities, for contextually appropriate robot behaviours and cooperative social human–robot interaction for the healthcare domain. The objective is to enable robots to become trustworthy and versatile social robots capable of having human-friendly and human assistive interactions, utilised to better assist human users’ needs by enabling the robot to sense, adapt, and respond appropriately to their requirements while taking into consideration their wider affective, motivational states, and behaviour. We propose an innovative approach to the difficult research challenge of endowing robots with social intelligence capabilities for human assistive interactions, going beyond the conventional robotic sense-think-act loop. We propose an architecture that addresses a wide range of social cooperation skills and features required for real human–robot social interaction, which includes language and vision analysis, dynamic emotional analysis (long-term affect and mood), semantic mapping to improve the robot’s knowledge of the local context, situational knowledge representation, and emotion-aware decision-making. Fundamental to this architecture is a normative ethical and social framework adapted to the specific challenges of robots engaging with caregivers and care-receivers.\",\"PeriodicalId\":90037,\"journal\":{\"name\":\"Paladyn : journal of behavioral robotics\",\"volume\":\"105 1\",\"pages\":\"437 - 453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paladyn : journal of behavioral robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pjbr-2021-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paladyn : journal of behavioral robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pjbr-2021-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文探讨了快速推进的创新,以多语言和多模态情感识别的形式赋予机器人社会智能能力,以及情感感知决策能力,用于医疗保健领域的情境适当的机器人行为和协作社会人机交互。目标是使机器人成为值得信赖的多功能社交机器人,能够进行人类友好和人类辅助交互,通过使机器人能够感知,适应并适当地响应他们的需求,同时考虑到他们更广泛的情感,动机状态和行为,从而更好地帮助人类用户的需求。我们提出了一种创新的方法来解决这一困难的研究挑战,即赋予机器人社会智能能力,以进行人类辅助互动,超越传统的机器人感知-思考-行动循环。我们提出了一个架构,解决了广泛的社会合作技能和特征,需要真正的人与机器人的社会互动,其中包括语言和视觉分析,动态情绪分析(长期影响和情绪),语义映射,以提高机器人的本地背景知识,情景知识表示和情绪感知决策。这个架构的基础是一个规范的道德和社会框架,适应机器人与照顾者和照顾者接触的具体挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CASIE – Computing affect and social intelligence for healthcare in an ethical and trustworthy manner
Abstract This article explores the rapidly advancing innovation to endow robots with social intelligence capabilities in the form of multilingual and multimodal emotion recognition, and emotion-aware decision-making capabilities, for contextually appropriate robot behaviours and cooperative social human–robot interaction for the healthcare domain. The objective is to enable robots to become trustworthy and versatile social robots capable of having human-friendly and human assistive interactions, utilised to better assist human users’ needs by enabling the robot to sense, adapt, and respond appropriately to their requirements while taking into consideration their wider affective, motivational states, and behaviour. We propose an innovative approach to the difficult research challenge of endowing robots with social intelligence capabilities for human assistive interactions, going beyond the conventional robotic sense-think-act loop. We propose an architecture that addresses a wide range of social cooperation skills and features required for real human–robot social interaction, which includes language and vision analysis, dynamic emotional analysis (long-term affect and mood), semantic mapping to improve the robot’s knowledge of the local context, situational knowledge representation, and emotion-aware decision-making. Fundamental to this architecture is a normative ethical and social framework adapted to the specific challenges of robots engaging with caregivers and care-receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信