Chengbing Yu, Zhenhua Zheng, Qingxuan Wang, Liyuan Zhang, Zhegnsheng Ma
{"title":"废水中磺酸盐染料的络合萃取及染料结构对萃取性能的影响","authors":"Chengbing Yu, Zhenhua Zheng, Qingxuan Wang, Liyuan Zhang, Zhegnsheng Ma","doi":"10.1080/01496395.2023.2248368","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the influences of sulfonate dye structure on the extraction rate, the reaction mechanism, and the complex ratio were studied. The parent structure and the number of sulfonic acid groups of sulfonate dyes have a great effect on extraction performance, whilst the molecular weight has a small effect on extraction performance. The results indicate that the extraction rate of azo dyes remains above 80% at the aqueous-organic phase ratio of 7:1, but the extraction rate of two anthraquinone dyes decreases to 54.9% and 34.9%, respectively; and the fewer the number of sulfonic acid groups of the dye, the better the extraction performance under the condition of insufficient extractant, the extraction rate of Direct Grey D and Acid Red M is over 82%. A complete set of methods for determining the ratio of the extractant and the dye was determined using the distribution coefficient method. The interaction between Telon Yellow 4 R and trioctylamine is ionic association and hydrogen bonding association, and the complex ratio between the dye and the extractant is about 2:1. In summary, dye structure has a big impact on the extraction performance, which should be taken into account in actual application.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex extraction of sulfonate dyes from wastewater and the effect of dye structure on extraction performance\",\"authors\":\"Chengbing Yu, Zhenhua Zheng, Qingxuan Wang, Liyuan Zhang, Zhegnsheng Ma\",\"doi\":\"10.1080/01496395.2023.2248368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, the influences of sulfonate dye structure on the extraction rate, the reaction mechanism, and the complex ratio were studied. The parent structure and the number of sulfonic acid groups of sulfonate dyes have a great effect on extraction performance, whilst the molecular weight has a small effect on extraction performance. The results indicate that the extraction rate of azo dyes remains above 80% at the aqueous-organic phase ratio of 7:1, but the extraction rate of two anthraquinone dyes decreases to 54.9% and 34.9%, respectively; and the fewer the number of sulfonic acid groups of the dye, the better the extraction performance under the condition of insufficient extractant, the extraction rate of Direct Grey D and Acid Red M is over 82%. A complete set of methods for determining the ratio of the extractant and the dye was determined using the distribution coefficient method. The interaction between Telon Yellow 4 R and trioctylamine is ionic association and hydrogen bonding association, and the complex ratio between the dye and the extractant is about 2:1. In summary, dye structure has a big impact on the extraction performance, which should be taken into account in actual application.\",\"PeriodicalId\":21680,\"journal\":{\"name\":\"Separation Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01496395.2023.2248368\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2248368","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Complex extraction of sulfonate dyes from wastewater and the effect of dye structure on extraction performance
ABSTRACT In this study, the influences of sulfonate dye structure on the extraction rate, the reaction mechanism, and the complex ratio were studied. The parent structure and the number of sulfonic acid groups of sulfonate dyes have a great effect on extraction performance, whilst the molecular weight has a small effect on extraction performance. The results indicate that the extraction rate of azo dyes remains above 80% at the aqueous-organic phase ratio of 7:1, but the extraction rate of two anthraquinone dyes decreases to 54.9% and 34.9%, respectively; and the fewer the number of sulfonic acid groups of the dye, the better the extraction performance under the condition of insufficient extractant, the extraction rate of Direct Grey D and Acid Red M is over 82%. A complete set of methods for determining the ratio of the extractant and the dye was determined using the distribution coefficient method. The interaction between Telon Yellow 4 R and trioctylamine is ionic association and hydrogen bonding association, and the complex ratio between the dye and the extractant is about 2:1. In summary, dye structure has a big impact on the extraction performance, which should be taken into account in actual application.
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.