利用单次射击检测器(SSD) Mobilenet V2进行番茄叶病检测的开发

S. G. Brucal, Luigi Carlo De Jesus, Jex De Los Santos, Mariel Joy Mendoza, Khyrstelle Harion, Guiliane Altaire Reyes, Dominador Nevalasca, Jv Kay Reyes
{"title":"利用单次射击检测器(SSD) Mobilenet V2进行番茄叶病检测的开发","authors":"S. G. Brucal, Luigi Carlo De Jesus, Jex De Los Santos, Mariel Joy Mendoza, Khyrstelle Harion, Guiliane Altaire Reyes, Dominador Nevalasca, Jv Kay Reyes","doi":"10.25147/ijcsr.2017.001.1.136","DOIUrl":null,"url":null,"abstract":"Purpose – To create a software prototype for the tomato leaf disease detection model to identify the tomato leaf condition and detect and identify the disease present in it. Methodology – Using the TensorFlow 2 Object Detection API, the object detection model used is the Single Shot Detector (SSD) MobileNetV2 Object Detection model. The feature extractor used is the pre-trained TF2 MobileNetV2 model with the ImageNet dataset providing trained weights that allows feature extraction. Combining the pre-trained TF2 MobileNetV2 and Convolutional Neural Network (CNN) for SSD, the result object localization and image classification with SSD, and feature extractor pre-trained model. Result – When training the model, at the 1300th step out of 6000 steps, the learning rate spiked from 0 to 0.7999. It then stabilized from 0.7999 and gradually decreased to 0.7796. After training, the total loss of the model is 46.95% for evaluation and 45.32% for training results. The average recall of the model is","PeriodicalId":33870,"journal":{"name":"International Journal of Computing Sciences Research","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Tomato Leaf Disease Detection using Single Shot Detector (SSD) Mobilenet V2\",\"authors\":\"S. G. Brucal, Luigi Carlo De Jesus, Jex De Los Santos, Mariel Joy Mendoza, Khyrstelle Harion, Guiliane Altaire Reyes, Dominador Nevalasca, Jv Kay Reyes\",\"doi\":\"10.25147/ijcsr.2017.001.1.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose – To create a software prototype for the tomato leaf disease detection model to identify the tomato leaf condition and detect and identify the disease present in it. Methodology – Using the TensorFlow 2 Object Detection API, the object detection model used is the Single Shot Detector (SSD) MobileNetV2 Object Detection model. The feature extractor used is the pre-trained TF2 MobileNetV2 model with the ImageNet dataset providing trained weights that allows feature extraction. Combining the pre-trained TF2 MobileNetV2 and Convolutional Neural Network (CNN) for SSD, the result object localization and image classification with SSD, and feature extractor pre-trained model. Result – When training the model, at the 1300th step out of 6000 steps, the learning rate spiked from 0 to 0.7999. It then stabilized from 0.7999 and gradually decreased to 0.7796. After training, the total loss of the model is 46.95% for evaluation and 45.32% for training results. The average recall of the model is\",\"PeriodicalId\":33870,\"journal\":{\"name\":\"International Journal of Computing Sciences Research\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing Sciences Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25147/ijcsr.2017.001.1.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Sciences Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25147/ijcsr.2017.001.1.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目的-创建番茄叶片病害检测模型的软件原型,用于识别番茄叶片状况并检测和识别其中存在的病害。方法-使用TensorFlow 2对象检测API,使用的对象检测模型是单镜头检测器(SSD) MobileNetV2对象检测模型。使用的特征提取器是预先训练的TF2 MobileNetV2模型,ImageNet数据集提供训练后的权重,允许特征提取。结合预训练的TF2 MobileNetV2和卷积神经网络(CNN)的SSD,结果对象定位和图像分类与SSD,特征提取器预训练模型。结果-当训练模型时,在6000步中的第1300步,学习率从0飙升至0.7999。然后从0.7999稳定下来,逐渐下降到0.7796。经过训练后,模型的评估总损失46.95%,训练结果总损失45.32%。该车型的平均召回率为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Tomato Leaf Disease Detection using Single Shot Detector (SSD) Mobilenet V2
Purpose – To create a software prototype for the tomato leaf disease detection model to identify the tomato leaf condition and detect and identify the disease present in it. Methodology – Using the TensorFlow 2 Object Detection API, the object detection model used is the Single Shot Detector (SSD) MobileNetV2 Object Detection model. The feature extractor used is the pre-trained TF2 MobileNetV2 model with the ImageNet dataset providing trained weights that allows feature extraction. Combining the pre-trained TF2 MobileNetV2 and Convolutional Neural Network (CNN) for SSD, the result object localization and image classification with SSD, and feature extractor pre-trained model. Result – When training the model, at the 1300th step out of 6000 steps, the learning rate spiked from 0 to 0.7999. It then stabilized from 0.7999 and gradually decreased to 0.7796. After training, the total loss of the model is 46.95% for evaluation and 45.32% for training results. The average recall of the model is
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
25
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信