含激波的二维层流可压缩流的数值解

Q3 Engineering
W. Goodrich, J. Lamb, J. Bertin
{"title":"含激波的二维层流可压缩流的数值解","authors":"W. Goodrich, J. Lamb, J. Bertin","doi":"10.1115/1.3425548","DOIUrl":null,"url":null,"abstract":"The complete, time-dependent Navier-Stokes equations are expressed in conservation form and solved by employing an explicit finite difference numerical technique which incorporates artificial viscosity terms of the form first suggested by Rusanov for numerical stability in the vicinity of shock waves. Surface boundary conditions are developed in a consistent and unique manner through the use of a physically oriented extrapolation procedure. From numerical experimentation an extended range for the explicit stability parameter is established. Also employed is an additional convergence parameter which relates incremental spatial steps. Convergence of the transient solution to a steady state flow was obtained after 400 to 500 time steps.","PeriodicalId":34897,"journal":{"name":"应用基础与工程科学学报","volume":"111 1","pages":"765-769"},"PeriodicalIF":0.0000,"publicationDate":"1972-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Numerical Solution of Two-Dimensional, Laminar Compressible Flows With Imbedded Shock Waves\",\"authors\":\"W. Goodrich, J. Lamb, J. Bertin\",\"doi\":\"10.1115/1.3425548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complete, time-dependent Navier-Stokes equations are expressed in conservation form and solved by employing an explicit finite difference numerical technique which incorporates artificial viscosity terms of the form first suggested by Rusanov for numerical stability in the vicinity of shock waves. Surface boundary conditions are developed in a consistent and unique manner through the use of a physically oriented extrapolation procedure. From numerical experimentation an extended range for the explicit stability parameter is established. Also employed is an additional convergence parameter which relates incremental spatial steps. Convergence of the transient solution to a steady state flow was obtained after 400 to 500 time steps.\",\"PeriodicalId\":34897,\"journal\":{\"name\":\"应用基础与工程科学学报\",\"volume\":\"111 1\",\"pages\":\"765-769\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用基础与工程科学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/1.3425548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用基础与工程科学学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/1.3425548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

完整的、时变的Navier-Stokes方程以守恒形式表示,并通过采用显式有限差分数值技术求解,该技术包含了由Rusanov首先提出的用于激波附近数值稳定性的形式的人工粘度项。表面边界条件是通过使用物理导向的外推程序以一致和独特的方式开发的。通过数值实验,建立了显式稳定性参数的扩展范围。还采用了一个附加的收敛参数,该参数与增量空间步骤有关。在400 ~ 500个时间步长后得到稳态流的瞬态解收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Numerical Solution of Two-Dimensional, Laminar Compressible Flows With Imbedded Shock Waves
The complete, time-dependent Navier-Stokes equations are expressed in conservation form and solved by employing an explicit finite difference numerical technique which incorporates artificial viscosity terms of the form first suggested by Rusanov for numerical stability in the vicinity of shock waves. Surface boundary conditions are developed in a consistent and unique manner through the use of a physically oriented extrapolation procedure. From numerical experimentation an extended range for the explicit stability parameter is established. Also employed is an additional convergence parameter which relates incremental spatial steps. Convergence of the transient solution to a steady state flow was obtained after 400 to 500 time steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用基础与工程科学学报
应用基础与工程科学学报 Engineering-Engineering (all)
CiteScore
1.60
自引率
0.00%
发文量
2784
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信