{"title":"Bredon (co)同调、K-(co)同调和Bianchi群中的Hecke算子","authors":"David Munoz, Jorge Plazas, Mario Vel'asquez","doi":"10.1142/s1793525321500606","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a framework for the study of Hecke operators acting on the Bredon (co)homology of an arithmetic discrete group. Our main interest lies in the study of Hecke operators for Bianchi groups. Using the Baum–Connes conjecture, we can transfer computations in Bredon homology to obtain a Hecke action on the [Formula: see text]-theory of the reduced [Formula: see text]-algebra of the group. We show the power of this method giving explicit computations for the group [Formula: see text]. In order to carry out these computations we use an Atiyah–Segal type spectral sequence together with the Bredon homology of the classifying space for proper actions.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hecke operators in Bredon (co)homology, K-(co)homology and Bianchi groups\",\"authors\":\"David Munoz, Jorge Plazas, Mario Vel'asquez\",\"doi\":\"10.1142/s1793525321500606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a framework for the study of Hecke operators acting on the Bredon (co)homology of an arithmetic discrete group. Our main interest lies in the study of Hecke operators for Bianchi groups. Using the Baum–Connes conjecture, we can transfer computations in Bredon homology to obtain a Hecke action on the [Formula: see text]-theory of the reduced [Formula: see text]-algebra of the group. We show the power of this method giving explicit computations for the group [Formula: see text]. In order to carry out these computations we use an Atiyah–Segal type spectral sequence together with the Bredon homology of the classifying space for proper actions.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525321500606\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500606","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hecke operators in Bredon (co)homology, K-(co)homology and Bianchi groups
In this paper, we provide a framework for the study of Hecke operators acting on the Bredon (co)homology of an arithmetic discrete group. Our main interest lies in the study of Hecke operators for Bianchi groups. Using the Baum–Connes conjecture, we can transfer computations in Bredon homology to obtain a Hecke action on the [Formula: see text]-theory of the reduced [Formula: see text]-algebra of the group. We show the power of this method giving explicit computations for the group [Formula: see text]. In order to carry out these computations we use an Atiyah–Segal type spectral sequence together with the Bredon homology of the classifying space for proper actions.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.