单侧Lipschitz系数的多维输运方程的唯一性和弱稳定性

IF 1.2 2区 数学 Q1 MATHEMATICS
F. James, S. Mancini, F. Bouchut
{"title":"单侧Lipschitz系数的多维输运方程的唯一性和弱稳定性","authors":"F. James, S. Mancini, F. Bouchut","doi":"10.2422/2036-2145.2005.1.01","DOIUrl":null,"url":null,"abstract":"The Cauchy problem for a multidimensional linear transport equation with discontinuous coefficient is investigated. Provided the coefficient satisfies a one-sided Lipschitz condition, existence, uniqueness and weak stability of solutions are obtained for either the conservative backward problem or the advective forward problem by duality. Specific uniqueness criteria are introduced for the backward conservation equation since weak solutions are not unique. A main point is the introduction of a generalized flow in the sense of partial differential equations, which is proved to have unique jacobian determinant, even though it is itself nonunique.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"67 1","pages":"1-25"},"PeriodicalIF":1.2000,"publicationDate":"2004-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient\",\"authors\":\"F. James, S. Mancini, F. Bouchut\",\"doi\":\"10.2422/2036-2145.2005.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cauchy problem for a multidimensional linear transport equation with discontinuous coefficient is investigated. Provided the coefficient satisfies a one-sided Lipschitz condition, existence, uniqueness and weak stability of solutions are obtained for either the conservative backward problem or the advective forward problem by duality. Specific uniqueness criteria are introduced for the backward conservation equation since weak solutions are not unique. A main point is the introduction of a generalized flow in the sense of partial differential equations, which is proved to have unique jacobian determinant, even though it is itself nonunique.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"67 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2004-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2005.1.01\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2005.1.01","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 66

摘要

研究了具有不连续系数的多维线性输运方程的柯西问题。当系数满足单侧Lipschitz条件时,通过对偶性得到了保守后向问题和顺向正向问题解的存在唯一性和弱稳定性。针对后向守恒方程弱解的不唯一性,引入了特定的唯一性准则。重点是引入了偏微分方程意义上的广义流,证明了它具有唯一的雅可比行列式,尽管它本身不是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient
The Cauchy problem for a multidimensional linear transport equation with discontinuous coefficient is investigated. Provided the coefficient satisfies a one-sided Lipschitz condition, existence, uniqueness and weak stability of solutions are obtained for either the conservative backward problem or the advective forward problem by duality. Specific uniqueness criteria are introduced for the backward conservation equation since weak solutions are not unique. A main point is the introduction of a generalized flow in the sense of partial differential equations, which is proved to have unique jacobian determinant, even though it is itself nonunique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信