{"title":"深度学习分类方法在表格网络安全基准测试中的应用","authors":"David Noever, S. M. Noever","doi":"10.5121/IJNSA.2021.13301","DOIUrl":null,"url":null,"abstract":"This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% accuracy. Using feature importance rank, a random forest solution on subsets shows the most important source-destination factors and the least important ones as mainly obscure protocols. It further extends the image classification problem to other cybersecurity benchmarks such as malware signatures extracted from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files (headers only). Both novel image datasets are available to the research community on Kaggle.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"74 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Classification Methods Applied to Tabular Cybersecurity Benchmarks\",\"authors\":\"David Noever, S. M. Noever\",\"doi\":\"10.5121/IJNSA.2021.13301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% accuracy. Using feature importance rank, a random forest solution on subsets shows the most important source-destination factors and the least important ones as mainly obscure protocols. It further extends the image classification problem to other cybersecurity benchmarks such as malware signatures extracted from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files (headers only). Both novel image datasets are available to the research community on Kaggle.\",\"PeriodicalId\":93303,\"journal\":{\"name\":\"International journal of network security & its applications\",\"volume\":\"74 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of network security & its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJNSA.2021.13301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJNSA.2021.13301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Classification Methods Applied to Tabular Cybersecurity Benchmarks
This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% accuracy. Using feature importance rank, a random forest solution on subsets shows the most important source-destination factors and the least important ones as mainly obscure protocols. It further extends the image classification problem to other cybersecurity benchmarks such as malware signatures extracted from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files (headers only). Both novel image datasets are available to the research community on Kaggle.