深度学习分类方法在表格网络安全基准测试中的应用

David Noever, S. M. Noever
{"title":"深度学习分类方法在表格网络安全基准测试中的应用","authors":"David Noever, S. M. Noever","doi":"10.5121/IJNSA.2021.13301","DOIUrl":null,"url":null,"abstract":"This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% accuracy. Using feature importance rank, a random forest solution on subsets shows the most important source-destination factors and the least important ones as mainly obscure protocols. It further extends the image classification problem to other cybersecurity benchmarks such as malware signatures extracted from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files (headers only). Both novel image datasets are available to the research community on Kaggle.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"74 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Classification Methods Applied to Tabular Cybersecurity Benchmarks\",\"authors\":\"David Noever, S. M. Noever\",\"doi\":\"10.5121/IJNSA.2021.13301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% accuracy. Using feature importance rank, a random forest solution on subsets shows the most important source-destination factors and the least important ones as mainly obscure protocols. It further extends the image classification problem to other cybersecurity benchmarks such as malware signatures extracted from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files (headers only). Both novel image datasets are available to the research community on Kaggle.\",\"PeriodicalId\":93303,\"journal\":{\"name\":\"International journal of network security & its applications\",\"volume\":\"74 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of network security & its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJNSA.2021.13301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJNSA.2021.13301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究将UNSW-NB15的网络攻击数据集重构为图像空间中的入侵检测问题。使用单热编码,生成的灰度缩略图为深度学习算法提供了25万个示例。应用MobileNetV2的卷积神经网络架构,该工作证明了区分正常流量和攻击流量的准确率为97%。对9个单独的攻击家族(漏洞利用、蠕虫、shellcode)进行进一步的分类改进,总体准确率为54%。利用特征重要性排序,对子集进行随机森林求解,显示出最重要的源-目的因素和最不重要的因素,主要是模糊协议。它进一步将图像分类问题扩展到其他网络安全基准,例如从二进制标头中提取的恶意软件签名,将计算机病毒检测为可移植可执行文件(仅标头)的总体准确率为80%。这两个新的图像数据集都可以在Kaggle上的研究社区中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Classification Methods Applied to Tabular Cybersecurity Benchmarks
This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% accuracy. Using feature importance rank, a random forest solution on subsets shows the most important source-destination factors and the least important ones as mainly obscure protocols. It further extends the image classification problem to other cybersecurity benchmarks such as malware signatures extracted from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files (headers only). Both novel image datasets are available to the research community on Kaggle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信