{"title":"使用双井架钻机的ESP和完井部署","authors":"D. Lemos, J. Marins, R. D. Lima","doi":"10.2118/206309-ms","DOIUrl":null,"url":null,"abstract":"\n This paper presents an innovative concept to run Electrical Submersible Pumps (ESP) and upper completion utilizing dual derrick drillship rigs in deep water wells. The availability of a second deck to assemble, test and rack long assemblies brings the possibility to conduct a safer, efficient and reliable operation. The experience in Brazil running complex completions and high horsepower ESPs shows how important is to implement initiatives to reduce rig time. The main objective of the new process is to have every completion tool readily available in the drilling deck, requiring minimum time to connect it to the completion string. In the standard process, the tool sits in the pipe deck until completion string reaches its set position and only then the equipment is brought into the rig floor to be serviced and made up to the completion string. The methodology to assemble ESP and completion tools offline in the auxiliary derrick was developed in partnership with the operator, the service company, and the drilling rig contractor.\n The offline preparation concept was considered as part of the completion design phase analyzing every step of the upper completion run, looking for efficiency improvement and reduced total rig time.\n The modern automated pipe handling system was used to manipulate the long and heavy assemblies from the auxiliary deck to the racking system and from the racking system to the main deck without any safety concern, and with minimal human intervention.\n Eight deep-water operations were completed in Brazil using the new concept and the results brought important rig time reduction in the upper completion running time. The tools that were part of the completion included DHSV, permanent downhole gauges, chemical injection valves, 1600 HP ESP system and tubing test valves. The new process allows the team to service equipment without the usual operation rush reducing installation related failure therefore increasing equipment reliability.\n The methodology presented on this paper contributes to oil industry as a field-proven reference for offshore ESP and completion deployment technique reducing HSE exposure and total well construction cost. This is particularly important for deep and ultra-deepwater projects which are associated with high intervention costs. Dual derrick rigs were designed with focus to improve drilling operations and after the new process development, the modern robotized machinery empowers ESP and completion activities with improved efficiencies.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESP and Completion Deployment using Dual Derrick Drill Ship Rigs\",\"authors\":\"D. Lemos, J. Marins, R. D. Lima\",\"doi\":\"10.2118/206309-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents an innovative concept to run Electrical Submersible Pumps (ESP) and upper completion utilizing dual derrick drillship rigs in deep water wells. The availability of a second deck to assemble, test and rack long assemblies brings the possibility to conduct a safer, efficient and reliable operation. The experience in Brazil running complex completions and high horsepower ESPs shows how important is to implement initiatives to reduce rig time. The main objective of the new process is to have every completion tool readily available in the drilling deck, requiring minimum time to connect it to the completion string. In the standard process, the tool sits in the pipe deck until completion string reaches its set position and only then the equipment is brought into the rig floor to be serviced and made up to the completion string. The methodology to assemble ESP and completion tools offline in the auxiliary derrick was developed in partnership with the operator, the service company, and the drilling rig contractor.\\n The offline preparation concept was considered as part of the completion design phase analyzing every step of the upper completion run, looking for efficiency improvement and reduced total rig time.\\n The modern automated pipe handling system was used to manipulate the long and heavy assemblies from the auxiliary deck to the racking system and from the racking system to the main deck without any safety concern, and with minimal human intervention.\\n Eight deep-water operations were completed in Brazil using the new concept and the results brought important rig time reduction in the upper completion running time. The tools that were part of the completion included DHSV, permanent downhole gauges, chemical injection valves, 1600 HP ESP system and tubing test valves. The new process allows the team to service equipment without the usual operation rush reducing installation related failure therefore increasing equipment reliability.\\n The methodology presented on this paper contributes to oil industry as a field-proven reference for offshore ESP and completion deployment technique reducing HSE exposure and total well construction cost. This is particularly important for deep and ultra-deepwater projects which are associated with high intervention costs. Dual derrick rigs were designed with focus to improve drilling operations and after the new process development, the modern robotized machinery empowers ESP and completion activities with improved efficiencies.\",\"PeriodicalId\":10965,\"journal\":{\"name\":\"Day 3 Thu, September 23, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 23, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206309-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206309-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ESP and Completion Deployment using Dual Derrick Drill Ship Rigs
This paper presents an innovative concept to run Electrical Submersible Pumps (ESP) and upper completion utilizing dual derrick drillship rigs in deep water wells. The availability of a second deck to assemble, test and rack long assemblies brings the possibility to conduct a safer, efficient and reliable operation. The experience in Brazil running complex completions and high horsepower ESPs shows how important is to implement initiatives to reduce rig time. The main objective of the new process is to have every completion tool readily available in the drilling deck, requiring minimum time to connect it to the completion string. In the standard process, the tool sits in the pipe deck until completion string reaches its set position and only then the equipment is brought into the rig floor to be serviced and made up to the completion string. The methodology to assemble ESP and completion tools offline in the auxiliary derrick was developed in partnership with the operator, the service company, and the drilling rig contractor.
The offline preparation concept was considered as part of the completion design phase analyzing every step of the upper completion run, looking for efficiency improvement and reduced total rig time.
The modern automated pipe handling system was used to manipulate the long and heavy assemblies from the auxiliary deck to the racking system and from the racking system to the main deck without any safety concern, and with minimal human intervention.
Eight deep-water operations were completed in Brazil using the new concept and the results brought important rig time reduction in the upper completion running time. The tools that were part of the completion included DHSV, permanent downhole gauges, chemical injection valves, 1600 HP ESP system and tubing test valves. The new process allows the team to service equipment without the usual operation rush reducing installation related failure therefore increasing equipment reliability.
The methodology presented on this paper contributes to oil industry as a field-proven reference for offshore ESP and completion deployment technique reducing HSE exposure and total well construction cost. This is particularly important for deep and ultra-deepwater projects which are associated with high intervention costs. Dual derrick rigs were designed with focus to improve drilling operations and after the new process development, the modern robotized machinery empowers ESP and completion activities with improved efficiencies.