T. Tian, Jingang Wang, Haijiang Wang, Jing Cui, Xiaoyan Shi, Jianghui Song, Weidi Li, M. Zhong, Yue Qiu, Ting Xu
{"title":"施氮通过增强渗透平衡、活性氧清除和油菜幼苗光合作用缓解盐胁迫","authors":"T. Tian, Jingang Wang, Haijiang Wang, Jing Cui, Xiaoyan Shi, Jianghui Song, Weidi Li, M. Zhong, Yue Qiu, Ting Xu","doi":"10.1080/15592324.2022.2081419","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nitrogen application could alleviate salt stress on crops, but the specific physiological mechanism is still unclear. Therefore, in this study, a pot experiment was conducted to explore the effects of different application rates of nitrogen (0, 0.15, 0.30, and 0.45 g·kg−1) on the growth parameters, osmotic adjustment, reactive oxygen species scavenging, and photosynthesis of rapeseed seedlings planted in the soils with different concentrations of sodium chloride (1.5, 3.5, 5.5, and 7.5 g·kg−1). The results showed that nitrogen could alleviate the inhibition of salt on rapeseed growth, and improve the antioxidant enzyme activities and the contents of non-enzymatic substances, K+, soluble protein (SP), soluble sugar (SS), and proline. Besides, there was a significant correlation between the indexes of active oxygen scavenging system, osmoregulation system, and photosynthesis. Therefore, applying appropriate amount of nitrogen can promote the growth and development of rapeseed seedlings under salt stress, accelerate the scavenging of reactive oxygen species, maintain osmotic balance, and promote photosynthesis. This study will improve our understanding on the mechanism by which nitrogen application alleviates salt stress to crops.","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"28 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings (Brassica napus)\",\"authors\":\"T. Tian, Jingang Wang, Haijiang Wang, Jing Cui, Xiaoyan Shi, Jianghui Song, Weidi Li, M. Zhong, Yue Qiu, Ting Xu\",\"doi\":\"10.1080/15592324.2022.2081419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Nitrogen application could alleviate salt stress on crops, but the specific physiological mechanism is still unclear. Therefore, in this study, a pot experiment was conducted to explore the effects of different application rates of nitrogen (0, 0.15, 0.30, and 0.45 g·kg−1) on the growth parameters, osmotic adjustment, reactive oxygen species scavenging, and photosynthesis of rapeseed seedlings planted in the soils with different concentrations of sodium chloride (1.5, 3.5, 5.5, and 7.5 g·kg−1). The results showed that nitrogen could alleviate the inhibition of salt on rapeseed growth, and improve the antioxidant enzyme activities and the contents of non-enzymatic substances, K+, soluble protein (SP), soluble sugar (SS), and proline. Besides, there was a significant correlation between the indexes of active oxygen scavenging system, osmoregulation system, and photosynthesis. Therefore, applying appropriate amount of nitrogen can promote the growth and development of rapeseed seedlings under salt stress, accelerate the scavenging of reactive oxygen species, maintain osmotic balance, and promote photosynthesis. This study will improve our understanding on the mechanism by which nitrogen application alleviates salt stress to crops.\",\"PeriodicalId\":20232,\"journal\":{\"name\":\"Plant Signaling & Behavior\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Signaling & Behavior\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2022.2081419\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2081419","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings (Brassica napus)
ABSTRACT Nitrogen application could alleviate salt stress on crops, but the specific physiological mechanism is still unclear. Therefore, in this study, a pot experiment was conducted to explore the effects of different application rates of nitrogen (0, 0.15, 0.30, and 0.45 g·kg−1) on the growth parameters, osmotic adjustment, reactive oxygen species scavenging, and photosynthesis of rapeseed seedlings planted in the soils with different concentrations of sodium chloride (1.5, 3.5, 5.5, and 7.5 g·kg−1). The results showed that nitrogen could alleviate the inhibition of salt on rapeseed growth, and improve the antioxidant enzyme activities and the contents of non-enzymatic substances, K+, soluble protein (SP), soluble sugar (SS), and proline. Besides, there was a significant correlation between the indexes of active oxygen scavenging system, osmoregulation system, and photosynthesis. Therefore, applying appropriate amount of nitrogen can promote the growth and development of rapeseed seedlings under salt stress, accelerate the scavenging of reactive oxygen species, maintain osmotic balance, and promote photosynthesis. This study will improve our understanding on the mechanism by which nitrogen application alleviates salt stress to crops.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.