D. Mandal, Nabajit Baruah, Smita Swarup Jena, Bichitra Nayak
{"title":"衰竭油藏重力辅助非混相注气:成功试点案例研究","authors":"D. Mandal, Nabajit Baruah, Smita Swarup Jena, Bichitra Nayak","doi":"10.2118/194563-MS","DOIUrl":null,"url":null,"abstract":"\n Hydrocarbon gas injection into the reservoir is one of the most effective EOR processes. In case of a dipping and light oil reservoir, immiscible gas injection can give further impetus to the oil recovery. Since, average current gas saturation in the subject reservoir has become high due to depletion rendering water injection at this late stage is found to be ineffective, scope of gravity assisted immiscible gas injection as an alternative has been evaluated to assess its impact on reservoir pressure and ultimate recovery.\n The present study pertains to a high permeable clastic light oil reservoir with reasonable dip, belonging to an old field of South Assam Shelf of India under production since 1990 with current recovery of 22% of STOIIP. The reservoir being undersaturated with no aquifer support, shows significant decline in reservoir pressure (260 ksc of initial pressure to current level of 50 ksc). Simulation study has been carried out on a fine scale geo-cellular model. Multiple realizations have been created considering combinations of oil producers and gas injection wells assigning varied rates to study the different development scenarios and impact on recovery improvement. The study indicates an incremental oil recovery of about 14% of STOIIP by immiscible gas injection.\n Based on the study, immiscible gas injection has been initiated in the reservoir on pilot scale basis through two gas injectors with continuous monitoring. After gas injection during last one year, reservoir pressure increased about 25 ksc and consequently per well productivity also increased. Non-flowing well starts producing and currently sand is producing nearly 25% higher than earlier production before gas injection. Based on the encouraging result from pilot gas injection, decided to expand the process at field level and subsequently drilling of new oil producers after jacking up of reservoir.\n The study has brought out that the gas injection into shallower portion of the reservoir yields better sweep efficiency to displace the oil to the deeper portion of the reservoir due to the gravity effects and hence, appropriate locales of the reservoir are targeted for additional input generation to augment the oil recovery.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gravity Assisted Immiscible Gas Injection in a Depleted Reservoir: A Case Study of Successful Pilot Implementation\",\"authors\":\"D. Mandal, Nabajit Baruah, Smita Swarup Jena, Bichitra Nayak\",\"doi\":\"10.2118/194563-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrocarbon gas injection into the reservoir is one of the most effective EOR processes. In case of a dipping and light oil reservoir, immiscible gas injection can give further impetus to the oil recovery. Since, average current gas saturation in the subject reservoir has become high due to depletion rendering water injection at this late stage is found to be ineffective, scope of gravity assisted immiscible gas injection as an alternative has been evaluated to assess its impact on reservoir pressure and ultimate recovery.\\n The present study pertains to a high permeable clastic light oil reservoir with reasonable dip, belonging to an old field of South Assam Shelf of India under production since 1990 with current recovery of 22% of STOIIP. The reservoir being undersaturated with no aquifer support, shows significant decline in reservoir pressure (260 ksc of initial pressure to current level of 50 ksc). Simulation study has been carried out on a fine scale geo-cellular model. Multiple realizations have been created considering combinations of oil producers and gas injection wells assigning varied rates to study the different development scenarios and impact on recovery improvement. The study indicates an incremental oil recovery of about 14% of STOIIP by immiscible gas injection.\\n Based on the study, immiscible gas injection has been initiated in the reservoir on pilot scale basis through two gas injectors with continuous monitoring. After gas injection during last one year, reservoir pressure increased about 25 ksc and consequently per well productivity also increased. Non-flowing well starts producing and currently sand is producing nearly 25% higher than earlier production before gas injection. Based on the encouraging result from pilot gas injection, decided to expand the process at field level and subsequently drilling of new oil producers after jacking up of reservoir.\\n The study has brought out that the gas injection into shallower portion of the reservoir yields better sweep efficiency to displace the oil to the deeper portion of the reservoir due to the gravity effects and hence, appropriate locales of the reservoir are targeted for additional input generation to augment the oil recovery.\",\"PeriodicalId\":11150,\"journal\":{\"name\":\"Day 2 Wed, April 10, 2019\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, April 10, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194563-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194563-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gravity Assisted Immiscible Gas Injection in a Depleted Reservoir: A Case Study of Successful Pilot Implementation
Hydrocarbon gas injection into the reservoir is one of the most effective EOR processes. In case of a dipping and light oil reservoir, immiscible gas injection can give further impetus to the oil recovery. Since, average current gas saturation in the subject reservoir has become high due to depletion rendering water injection at this late stage is found to be ineffective, scope of gravity assisted immiscible gas injection as an alternative has been evaluated to assess its impact on reservoir pressure and ultimate recovery.
The present study pertains to a high permeable clastic light oil reservoir with reasonable dip, belonging to an old field of South Assam Shelf of India under production since 1990 with current recovery of 22% of STOIIP. The reservoir being undersaturated with no aquifer support, shows significant decline in reservoir pressure (260 ksc of initial pressure to current level of 50 ksc). Simulation study has been carried out on a fine scale geo-cellular model. Multiple realizations have been created considering combinations of oil producers and gas injection wells assigning varied rates to study the different development scenarios and impact on recovery improvement. The study indicates an incremental oil recovery of about 14% of STOIIP by immiscible gas injection.
Based on the study, immiscible gas injection has been initiated in the reservoir on pilot scale basis through two gas injectors with continuous monitoring. After gas injection during last one year, reservoir pressure increased about 25 ksc and consequently per well productivity also increased. Non-flowing well starts producing and currently sand is producing nearly 25% higher than earlier production before gas injection. Based on the encouraging result from pilot gas injection, decided to expand the process at field level and subsequently drilling of new oil producers after jacking up of reservoir.
The study has brought out that the gas injection into shallower portion of the reservoir yields better sweep efficiency to displace the oil to the deeper portion of the reservoir due to the gravity effects and hence, appropriate locales of the reservoir are targeted for additional input generation to augment the oil recovery.