拉姆齐超图中派系与恒星的关系

Pub Date : 2022-10-07 DOI:10.1002/rsa.21155
D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte
{"title":"拉姆齐超图中派系与恒星的关系","authors":"D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte","doi":"10.1002/rsa.21155","DOIUrl":null,"url":null,"abstract":"Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \\left(\\genfrac{}{}{0ex}{}{n}{2}\\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\\left({K}_4^{(3)},{S}_n^{(3)}\\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\\log^2n}\\le r\\left({K}_4^{(3)},{S}_n^{(3)}\\right)\\le {2}^{c^{\\prime }{n}^{2/3}\\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hypergraph Ramsey numbers of cliques versus stars\",\"authors\":\"D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte\",\"doi\":\"10.1002/rsa.21155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \\\\left(\\\\genfrac{}{}{0ex}{}{n}{2}\\\\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\\\\left({K}_4^{(3)},{S}_n^{(3)}\\\\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\\\\log^2n}\\\\le r\\\\left({K}_4^{(3)},{S}_n^{(3)}\\\\right)\\\\le {2}^{c^{\\\\prime }{n}^{2/3}\\\\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\\\\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\\\\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设Km(3)$$ {K}_m^{(3)} $$ 表示m上的完全3‐均匀超图$$ m $$ 顶点和Sn(3)$$ {S}_n^{(3)} $$ n+1上的3‐均匀超图$$ n+1 $$ 由n2个顶点组成$$ \left(\genfrac{}{}{0ex}{}{n}{2}\right) $$ 关联到给定顶点的边。然而许多超图Ramsey数要么以多项式增长,要么以指数增长,我们证明了非对角线Ramsey数r(K4(3),Sn(3))$$ r\left({K}_4^{(3)},{S}_n^{(3)}\right) $$ 表现出不寻常的中间生长速率,即2clog2n≤r(K4(3),Sn(3))≤2c 'n2/3logn;$$ {2}^{c\log^2n}\le r\left({K}_4^{(3)},{S}_n^{(3)}\right)\le {2}^{c^{\prime }{n}^{2/3}\log n}, $$对于某个正常数c$$ c $$ c '$$ {c}^{\prime } $$ . 这些界限的证明带来了网格图上一个新的Ramsey问题,这可能是一个独立的兴趣:最小N是什么$$ N $$ 使得笛卡尔积的任意2边着色KN□KN$$ {K}_N\square {K}_N $$ 包含红色矩形或蓝色Kn$$ {K}_n $$ ?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hypergraph Ramsey numbers of cliques versus stars
Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \left(\genfrac{}{}{0ex}{}{n}{2}\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\left({K}_4^{(3)},{S}_n^{(3)}\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\log^2n}\le r\left({K}_4^{(3)},{S}_n^{(3)}\right)\le {2}^{c^{\prime }{n}^{2/3}\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信