D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte
{"title":"拉姆齐超图中派系与恒星的关系","authors":"D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte","doi":"10.1002/rsa.21155","DOIUrl":null,"url":null,"abstract":"Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \\left(\\genfrac{}{}{0ex}{}{n}{2}\\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\\left({K}_4^{(3)},{S}_n^{(3)}\\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\\log^2n}\\le r\\left({K}_4^{(3)},{S}_n^{(3)}\\right)\\le {2}^{c^{\\prime }{n}^{2/3}\\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hypergraph Ramsey numbers of cliques versus stars\",\"authors\":\"D. Conlon, J. Fox, Xiaoyu He, D. Mubayi, Andrew Suk, Jacques Verstraëte\",\"doi\":\"10.1002/rsa.21155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \\\\left(\\\\genfrac{}{}{0ex}{}{n}{2}\\\\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\\\\left({K}_4^{(3)},{S}_n^{(3)}\\\\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\\\\log^2n}\\\\le r\\\\left({K}_4^{(3)},{S}_n^{(3)}\\\\right)\\\\le {2}^{c^{\\\\prime }{n}^{2/3}\\\\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\\\\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\\\\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let Km(3)$$ {K}_m^{(3)} $$ denote the complete 3‐uniform hypergraph on m$$ m $$ vertices and Sn(3)$$ {S}_n^{(3)} $$ the 3‐uniform hypergraph on n+1$$ n+1 $$ vertices consisting of all n2$$ \left(\genfrac{}{}{0ex}{}{n}{2}\right) $$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number r(K4(3),Sn(3))$$ r\left({K}_4^{(3)},{S}_n^{(3)}\right) $$ exhibits an unusual intermediate growth rate, namely, 2clog2n≤r(K4(3),Sn(3))≤2c′n2/3logn,$$ {2}^{c\log^2n}\le r\left({K}_4^{(3)},{S}_n^{(3)}\right)\le {2}^{c^{\prime }{n}^{2/3}\log n}, $$for some positive constants c$$ c $$ and c′$$ {c}^{\prime } $$ . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum N$$ N $$ such that any 2‐edge‐coloring of the Cartesian product KN□KN$$ {K}_N\square {K}_N $$ contains either a red rectangle or a blue Kn$$ {K}_n $$ ?