{"title":"单色电磁结背景下带电粒子的几何和量子性质","authors":"Adina Crișan, I. Vancea","doi":"10.7546/GIQ-22-2021-107-120","DOIUrl":null,"url":null,"abstract":"In this paper, we review recent results on the interaction of the topological electromagnetic fields with matter, in particular with spinless and spin half charged particles obtained earlier. The problems discussed here are the generalized Finsler geometries and their dualities in the Trautman-Ra\\~{n}ada backgrounds, the classical dynamics of the charged particles in the single non-null knot mode background and the quantization in the same background in the strong field approximation.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometric and Quantum Properties of Charged Particles in Monochromatic Electromagnetic Knot Background\",\"authors\":\"Adina Crișan, I. Vancea\",\"doi\":\"10.7546/GIQ-22-2021-107-120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review recent results on the interaction of the topological electromagnetic fields with matter, in particular with spinless and spin half charged particles obtained earlier. The problems discussed here are the generalized Finsler geometries and their dualities in the Trautman-Ra\\\\~{n}ada backgrounds, the classical dynamics of the charged particles in the single non-null knot mode background and the quantization in the same background in the strong field approximation.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-22-2021-107-120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-22-2021-107-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Geometric and Quantum Properties of Charged Particles in Monochromatic Electromagnetic Knot Background
In this paper, we review recent results on the interaction of the topological electromagnetic fields with matter, in particular with spinless and spin half charged particles obtained earlier. The problems discussed here are the generalized Finsler geometries and their dualities in the Trautman-Ra\~{n}ada backgrounds, the classical dynamics of the charged particles in the single non-null knot mode background and the quantization in the same background in the strong field approximation.