单色电磁结背景下带电粒子的几何和量子性质

Q4 Mathematics
Adina Crișan, I. Vancea
{"title":"单色电磁结背景下带电粒子的几何和量子性质","authors":"Adina Crișan, I. Vancea","doi":"10.7546/GIQ-22-2021-107-120","DOIUrl":null,"url":null,"abstract":"In this paper, we review recent results on the interaction of the topological electromagnetic fields with matter, in particular with spinless and spin half charged particles obtained earlier. The problems discussed here are the generalized Finsler geometries and their dualities in the Trautman-Ra\\~{n}ada backgrounds, the classical dynamics of the charged particles in the single non-null knot mode background and the quantization in the same background in the strong field approximation.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometric and Quantum Properties of Charged Particles in Monochromatic Electromagnetic Knot Background\",\"authors\":\"Adina Crișan, I. Vancea\",\"doi\":\"10.7546/GIQ-22-2021-107-120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review recent results on the interaction of the topological electromagnetic fields with matter, in particular with spinless and spin half charged particles obtained earlier. The problems discussed here are the generalized Finsler geometries and their dualities in the Trautman-Ra\\\\~{n}ada backgrounds, the classical dynamics of the charged particles in the single non-null knot mode background and the quantization in the same background in the strong field approximation.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-22-2021-107-120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-22-2021-107-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文综述了近年来关于拓扑电磁场与物质,特别是与无自旋和自旋半带电粒子相互作用的研究成果。本文讨论了Trautman-Ra\~{n}ada背景下的广义Finsler几何及其对偶性、单非零结模背景下带电粒子的经典动力学以及强场近似下相同背景下的量子化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric and Quantum Properties of Charged Particles in Monochromatic Electromagnetic Knot Background
In this paper, we review recent results on the interaction of the topological electromagnetic fields with matter, in particular with spinless and spin half charged particles obtained earlier. The problems discussed here are the generalized Finsler geometries and their dualities in the Trautman-Ra\~{n}ada backgrounds, the classical dynamics of the charged particles in the single non-null knot mode background and the quantization in the same background in the strong field approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信