用水平集法求解两相流流型转换的长度尺度和网格要求评价

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
M. Zimmer, I. Bolotnov
{"title":"用水平集法求解两相流流型转换的长度尺度和网格要求评价","authors":"M. Zimmer, I. Bolotnov","doi":"10.1115/1.4049934","DOIUrl":null,"url":null,"abstract":"\n New criteria for fully resolving two-phase flow regime transitions using direct numerical simulation with the level set method for interface capturing are proposed. A series of flows chosen to capture small scale interface phenomena are simulated at different grid refinements. These cases include droplet deformation and breakup in a simple shear field, the thin film around a Taylor bubble, and the rise of a bubble toward a free surface. These cases cover the major small scale phenomena observed in two-phase flows: internal recirculation, interface curvature, interface snapping, flow of liquid in thin films, and drainage/snapping of thin films. The results from these simulations and their associated grid studies were used to develop new meshing requirements for simulation of two-phase flow using interface capturing methods, in particular the level set method. When applicable, the code used in this work, PHASTA, was compared to experiments in order to contribute to the ongoing validation process of the code. Results show that when the solver meets these criteria, with the exception of resolving the nanometer scale liquid film between coalescing bubbles, the code is capable of accurately simulating interface topology changes.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Length Scales and Meshing Requirements for Resolving Two-Phase Flow Regime Transitions Using the Level Set Method\",\"authors\":\"M. Zimmer, I. Bolotnov\",\"doi\":\"10.1115/1.4049934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n New criteria for fully resolving two-phase flow regime transitions using direct numerical simulation with the level set method for interface capturing are proposed. A series of flows chosen to capture small scale interface phenomena are simulated at different grid refinements. These cases include droplet deformation and breakup in a simple shear field, the thin film around a Taylor bubble, and the rise of a bubble toward a free surface. These cases cover the major small scale phenomena observed in two-phase flows: internal recirculation, interface curvature, interface snapping, flow of liquid in thin films, and drainage/snapping of thin films. The results from these simulations and their associated grid studies were used to develop new meshing requirements for simulation of two-phase flow using interface capturing methods, in particular the level set method. When applicable, the code used in this work, PHASTA, was compared to experiments in order to contribute to the ongoing validation process of the code. Results show that when the solver meets these criteria, with the exception of resolving the nanometer scale liquid film between coalescing bubbles, the code is capable of accurately simulating interface topology changes.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049934\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4049934","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

提出了用水平集界面捕获法直接数值模拟完全求解两相流流型转换的新准则。选择一系列流动来捕捉小尺度的界面现象,模拟在不同的网格细化。这些情况包括液滴在简单剪切场中的变形和破裂,泰勒气泡周围的薄膜,以及气泡向自由表面的上升。这些案例涵盖了在两相流中观察到的主要小尺度现象:内部再循环、界面曲率、界面断裂、薄膜中的液体流动以及薄膜的排水/断裂。这些模拟和相关网格研究的结果被用于开发新的网格划分要求,用于使用界面捕获方法,特别是水平集方法来模拟两相流。在适用的情况下,将本工作中使用的代码PHASTA与实验进行比较,以便对正在进行的代码验证过程做出贡献。结果表明,当求解器满足上述条件时,除不能解析聚结气泡之间的纳米尺度液膜外,其余代码均能准确模拟界面拓扑变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Length Scales and Meshing Requirements for Resolving Two-Phase Flow Regime Transitions Using the Level Set Method
New criteria for fully resolving two-phase flow regime transitions using direct numerical simulation with the level set method for interface capturing are proposed. A series of flows chosen to capture small scale interface phenomena are simulated at different grid refinements. These cases include droplet deformation and breakup in a simple shear field, the thin film around a Taylor bubble, and the rise of a bubble toward a free surface. These cases cover the major small scale phenomena observed in two-phase flows: internal recirculation, interface curvature, interface snapping, flow of liquid in thin films, and drainage/snapping of thin films. The results from these simulations and their associated grid studies were used to develop new meshing requirements for simulation of two-phase flow using interface capturing methods, in particular the level set method. When applicable, the code used in this work, PHASTA, was compared to experiments in order to contribute to the ongoing validation process of the code. Results show that when the solver meets these criteria, with the exception of resolving the nanometer scale liquid film between coalescing bubbles, the code is capable of accurately simulating interface topology changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信