广义Kantorovich抽样类型级数的近似

A. S. Kumar, P. Devaraj
{"title":"广义Kantorovich抽样类型级数的近似","authors":"A. S. Kumar, P. Devaraj","doi":"10.14251/crisisonomy.2017.13.9.53","DOIUrl":null,"url":null,"abstract":"In the present article, we analyse the behaviour of a new family of Kantorovich type sampling operators $(K_w^{\\varphi}f)_{w>0}.$ First, we give a Voronovskaya type theorem for these Kantorovich generalized sampling series and a corresponding quantitative version in terms of the first order of modulus of continuity. Further, we study the order of approximation in $C({\\mathbb{R}})$ (the set of all uniformly continuous and bounded functions on ${\\mathbb{R}}$) for the family $(K_w^{\\varphi}f)_{w>0}.$ Finally, we give some examples of kernels such as B-spline kernels and Blackman-Harris kernel to which the theory can be applied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximation by Generalized Kantorovich Sampling Type Series\",\"authors\":\"A. S. Kumar, P. Devaraj\",\"doi\":\"10.14251/crisisonomy.2017.13.9.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article, we analyse the behaviour of a new family of Kantorovich type sampling operators $(K_w^{\\\\varphi}f)_{w>0}.$ First, we give a Voronovskaya type theorem for these Kantorovich generalized sampling series and a corresponding quantitative version in terms of the first order of modulus of continuity. Further, we study the order of approximation in $C({\\\\mathbb{R}})$ (the set of all uniformly continuous and bounded functions on ${\\\\mathbb{R}}$) for the family $(K_w^{\\\\varphi}f)_{w>0}.$ Finally, we give some examples of kernels such as B-spline kernels and Blackman-Harris kernel to which the theory can be applied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14251/crisisonomy.2017.13.9.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14251/crisisonomy.2017.13.9.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们分析了一类新的Kantorovich抽样算子$(K_w^{\varphi}f)_{w>0}的行为。首先,我们给出了这些Kantorovich广义抽样序列的Voronovskaya型定理,并给出了相应的关于连续模一阶的定量化版本。进一步,我们研究了$C({\mathbb{R}})$ (${\mathbb{R}}$上所有一致连续有界函数的集合)族$(K_w^{\varphi}f)_{w>0}的逼近阶。最后,我们给出了一些核的例子,如b样条核和Blackman-Harris核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approximation by Generalized Kantorovich Sampling Type Series
In the present article, we analyse the behaviour of a new family of Kantorovich type sampling operators $(K_w^{\varphi}f)_{w>0}.$ First, we give a Voronovskaya type theorem for these Kantorovich generalized sampling series and a corresponding quantitative version in terms of the first order of modulus of continuity. Further, we study the order of approximation in $C({\mathbb{R}})$ (the set of all uniformly continuous and bounded functions on ${\mathbb{R}}$) for the family $(K_w^{\varphi}f)_{w>0}.$ Finally, we give some examples of kernels such as B-spline kernels and Blackman-Harris kernel to which the theory can be applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信