{"title":"JUNO标定策略与仿真","authors":"Kangfu Zhu, Qingmin Zhang","doi":"10.22323/1.390.0817","DOIUrl":null,"url":null,"abstract":"The Jiangmen Underground Neutrino Observatory (JUNO) is designed to primarily measure the neutrino Mass Ordering (MO) by detecting reactor anti-neutrinos via inverse beta decay. JUNO also has other rich physical potentials. Its Central Detector (CD), which is an acrylic sphere with a diameter of 35.4 m, filled by approximately 20 kton of liquid scintillator (LS), is equipped with large photomultipliers (18k for the CD + 2k for the Water Pool) and small photomultipliers (25,600) to measure the energy resolution of neutrinos with an unprecedented energy resolution of 3%/ E and an energy non-linearity better than 1%. Accordingly, a calibration complex, including Automatic Calibration Unit (ACU), Cable Loop System (CLS), Guide Tube Calibration System (GTCS) and Remotely Operated under-liquid-scintillator Vehicles (ROV), is designed to deliver multiple radioactive sources for the energy coverage of reactor neutrinos and CD full-volume. In this proceeding, the new design details and up-to-date progress about JUNO calibration system are presented.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The JUNO Calibration Strategy and Simulation\",\"authors\":\"Kangfu Zhu, Qingmin Zhang\",\"doi\":\"10.22323/1.390.0817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Jiangmen Underground Neutrino Observatory (JUNO) is designed to primarily measure the neutrino Mass Ordering (MO) by detecting reactor anti-neutrinos via inverse beta decay. JUNO also has other rich physical potentials. Its Central Detector (CD), which is an acrylic sphere with a diameter of 35.4 m, filled by approximately 20 kton of liquid scintillator (LS), is equipped with large photomultipliers (18k for the CD + 2k for the Water Pool) and small photomultipliers (25,600) to measure the energy resolution of neutrinos with an unprecedented energy resolution of 3%/ E and an energy non-linearity better than 1%. Accordingly, a calibration complex, including Automatic Calibration Unit (ACU), Cable Loop System (CLS), Guide Tube Calibration System (GTCS) and Remotely Operated under-liquid-scintillator Vehicles (ROV), is designed to deliver multiple radioactive sources for the energy coverage of reactor neutrinos and CD full-volume. In this proceeding, the new design details and up-to-date progress about JUNO calibration system are presented.\",\"PeriodicalId\":20428,\"journal\":{\"name\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.390.0817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Jiangmen Underground Neutrino Observatory (JUNO) is designed to primarily measure the neutrino Mass Ordering (MO) by detecting reactor anti-neutrinos via inverse beta decay. JUNO also has other rich physical potentials. Its Central Detector (CD), which is an acrylic sphere with a diameter of 35.4 m, filled by approximately 20 kton of liquid scintillator (LS), is equipped with large photomultipliers (18k for the CD + 2k for the Water Pool) and small photomultipliers (25,600) to measure the energy resolution of neutrinos with an unprecedented energy resolution of 3%/ E and an energy non-linearity better than 1%. Accordingly, a calibration complex, including Automatic Calibration Unit (ACU), Cable Loop System (CLS), Guide Tube Calibration System (GTCS) and Remotely Operated under-liquid-scintillator Vehicles (ROV), is designed to deliver multiple radioactive sources for the energy coverage of reactor neutrinos and CD full-volume. In this proceeding, the new design details and up-to-date progress about JUNO calibration system are presented.