{"title":"数据不确定性优化问题鲁棒最优解的全局最优性条件和对偶性定理","authors":"J. Kerdkaew, R. Wangkeeree, R. Wangkeeree","doi":"10.3934/naco.2021053","DOIUrl":null,"url":null,"abstract":"In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [1,2] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators\",\"authors\":\"J. Kerdkaew, R. Wangkeeree, R. Wangkeeree\",\"doi\":\"10.3934/naco.2021053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [1,2] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021053\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators
In this paper, a robust optimization problem, which features a maximum function of continuously differentiable functions as its objective function, is investigated. Some new conditions for a robust KKT point, which is a robust feasible solution that satisfies the robust KKT condition, to be a global robust optimal solution of the uncertain optimization problem, which may have many local robust optimal solutions that are not global, are established. The obtained conditions make use of underestimators, which were first introduced by Jayakumar and Srisatkunarajah [1,2] of the Lagrangian associated with the problem at the robust KKT point. Furthermore, we also investigate the Wolfe type robust duality between the smooth uncertain optimization problem and its uncertain dual problem by proving the sufficient conditions for a weak duality and a strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem. The results on robust duality theorems are established in terms of underestimators. Additionally, to illustrate or support this study, some examples are presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.