用光谱学方法和机器学习算法诊断水环境中的有害杂质

А. О. Ефиторов, С. А. Доленко
{"title":"用光谱学方法和机器学习算法诊断水环境中的有害杂质","authors":"А. О. Ефиторов, С. А. Доленко","doi":"10.21883/os.2023.06.55915.106-23","DOIUrl":null,"url":null,"abstract":"The results of the development of a method for diagnosing 8-component aqueous solutions containing lithium, ammonium, iron (III), nickel, copper and zinc cations, as well as sulfate and nitrate anions, by IR absorption spectra and optical density spectra using artificial neural networks are presented. The application of artificial neural networks to the obtained arrays of spectroscopic data made it possible to ensure the simultaneous determination of the studied ions in a multicomponent mixture with an accuracy that satisfies the needs of environmental monitoring of natural and waste waters, as well as diagnostics of technological environments.","PeriodicalId":24059,"journal":{"name":"Оптика и спектроскопия","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Диагностика вредных примесей в водных средах с помощью спектроскопических методов и алгоритмов машинного обучения\",\"authors\":\"А. О. Ефиторов, С. А. Доленко\",\"doi\":\"10.21883/os.2023.06.55915.106-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of the development of a method for diagnosing 8-component aqueous solutions containing lithium, ammonium, iron (III), nickel, copper and zinc cations, as well as sulfate and nitrate anions, by IR absorption spectra and optical density spectra using artificial neural networks are presented. The application of artificial neural networks to the obtained arrays of spectroscopic data made it possible to ensure the simultaneous determination of the studied ions in a multicomponent mixture with an accuracy that satisfies the needs of environmental monitoring of natural and waste waters, as well as diagnostics of technological environments.\",\"PeriodicalId\":24059,\"journal\":{\"name\":\"Оптика и спектроскопия\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Оптика и спектроскопия\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21883/os.2023.06.55915.106-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Оптика и спектроскопия","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/os.2023.06.55915.106-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于人工神经网络的红外吸收光谱和光密度光谱诊断含有锂、铵、铁(III)、镍、铜和锌阳离子以及硫酸盐和硝酸盐阴离子的8组分水溶液的方法。将人工神经网络应用于获得的光谱数据阵列,可以确保在多组分混合物中同时测定所研究的离子,其准确性满足对自然和废水的环境监测以及技术环境诊断的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Диагностика вредных примесей в водных средах с помощью спектроскопических методов и алгоритмов машинного обучения
The results of the development of a method for diagnosing 8-component aqueous solutions containing lithium, ammonium, iron (III), nickel, copper and zinc cations, as well as sulfate and nitrate anions, by IR absorption spectra and optical density spectra using artificial neural networks are presented. The application of artificial neural networks to the obtained arrays of spectroscopic data made it possible to ensure the simultaneous determination of the studied ions in a multicomponent mixture with an accuracy that satisfies the needs of environmental monitoring of natural and waste waters, as well as diagnostics of technological environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信