{"title":"非极小和非极小导数耦合Einstein-Gauss-Bonnet理论的实现","authors":"Fitri ' Khairunnisa, G. Hikmawan, F. P. Zen","doi":"10.5614/itb.ijp.2022.33.1.3","DOIUrl":null,"url":null,"abstract":"The GW170817 event manifests that gravitational wave velocity is close to thespeed of light. As a result, several theories of gravity are no longer applicable, including EinsteinGauss-Bonnet (EGB) inflation. However, a constraint equation could be applied so that thetheory could produce a viable result. In this study, the EGB inflation is being extended byadding a non-minimal coupling (NMC) and a non-minimal derivative coupling (NMDC). Freeparameters values were evaluated to obtained viability with observational indices. We use powerlaw and exponential Gauss-Bonnet coupling functions. Each model provides observational valuesof ns and r that are compatible with the observations and has its characteristic. It specifiesthe free parameter that controls the alteration of ns and r values. The power-law model iscontrolled by the power m of the Gauss-Bonnet coupling function and the potential integrationconstant, V2. While the exponential model is controlled by the potential integration constant cand the power m of the exponential function. Some approximations do not hold true so that themodels need to be rectified. Apparently, the rectified power-law model is violating null energycondition (NEC), so we also provide the non-violating NEC power-law model.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GW170817 Implementation on Einstein-Gauss-Bonnet Theory with Non Minimal and Non Minimal Derivative Coupling\",\"authors\":\"Fitri ' Khairunnisa, G. Hikmawan, F. P. Zen\",\"doi\":\"10.5614/itb.ijp.2022.33.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The GW170817 event manifests that gravitational wave velocity is close to thespeed of light. As a result, several theories of gravity are no longer applicable, including EinsteinGauss-Bonnet (EGB) inflation. However, a constraint equation could be applied so that thetheory could produce a viable result. In this study, the EGB inflation is being extended byadding a non-minimal coupling (NMC) and a non-minimal derivative coupling (NMDC). Freeparameters values were evaluated to obtained viability with observational indices. We use powerlaw and exponential Gauss-Bonnet coupling functions. Each model provides observational valuesof ns and r that are compatible with the observations and has its characteristic. It specifiesthe free parameter that controls the alteration of ns and r values. The power-law model iscontrolled by the power m of the Gauss-Bonnet coupling function and the potential integrationconstant, V2. While the exponential model is controlled by the potential integration constant cand the power m of the exponential function. Some approximations do not hold true so that themodels need to be rectified. Apparently, the rectified power-law model is violating null energycondition (NEC), so we also provide the non-violating NEC power-law model.\",\"PeriodicalId\":13535,\"journal\":{\"name\":\"Indonesian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itb.ijp.2022.33.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2022.33.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GW170817 Implementation on Einstein-Gauss-Bonnet Theory with Non Minimal and Non Minimal Derivative Coupling
The GW170817 event manifests that gravitational wave velocity is close to thespeed of light. As a result, several theories of gravity are no longer applicable, including EinsteinGauss-Bonnet (EGB) inflation. However, a constraint equation could be applied so that thetheory could produce a viable result. In this study, the EGB inflation is being extended byadding a non-minimal coupling (NMC) and a non-minimal derivative coupling (NMDC). Freeparameters values were evaluated to obtained viability with observational indices. We use powerlaw and exponential Gauss-Bonnet coupling functions. Each model provides observational valuesof ns and r that are compatible with the observations and has its characteristic. It specifiesthe free parameter that controls the alteration of ns and r values. The power-law model iscontrolled by the power m of the Gauss-Bonnet coupling function and the potential integrationconstant, V2. While the exponential model is controlled by the potential integration constant cand the power m of the exponential function. Some approximations do not hold true so that themodels need to be rectified. Apparently, the rectified power-law model is violating null energycondition (NEC), so we also provide the non-violating NEC power-law model.