通过无监督学习解释分布式神经激活

Soheil Kolouri, Charles E. Martin, Heiko Hoffmann
{"title":"通过无监督学习解释分布式神经激活","authors":"Soheil Kolouri, Charles E. Martin, Heiko Hoffmann","doi":"10.1109/CVPRW.2017.213","DOIUrl":null,"url":null,"abstract":"Recent work has demonstrated the emergence of semantic object-part detectors in activation patterns of convolutional neural networks (CNNs), but did not account for the distributed multi-layer neural activations in such networks. In this work, we propose a novel method to extract distributed patterns of activations from a CNN and show that such patterns correspond to high-level visual attributes. We propose an unsupervised learning module that sits above a pre-trained CNN and learns distributed activation patterns of the network. We utilize elastic non-negative matrix factorization to analyze the responses of a pretrained CNN to an input image and extract salient image regions. The corresponding patterns of neural activations for the extracted salient regions are then clustered via unsupervised deep embedding for clustering (DEC) framework. We demonstrate that these distributed activations contain high-level image features that could be explicitly used for image classification.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"58 1","pages":"1670-1678"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Explaining Distributed Neural Activations via Unsupervised Learning\",\"authors\":\"Soheil Kolouri, Charles E. Martin, Heiko Hoffmann\",\"doi\":\"10.1109/CVPRW.2017.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has demonstrated the emergence of semantic object-part detectors in activation patterns of convolutional neural networks (CNNs), but did not account for the distributed multi-layer neural activations in such networks. In this work, we propose a novel method to extract distributed patterns of activations from a CNN and show that such patterns correspond to high-level visual attributes. We propose an unsupervised learning module that sits above a pre-trained CNN and learns distributed activation patterns of the network. We utilize elastic non-negative matrix factorization to analyze the responses of a pretrained CNN to an input image and extract salient image regions. The corresponding patterns of neural activations for the extracted salient regions are then clustered via unsupervised deep embedding for clustering (DEC) framework. We demonstrate that these distributed activations contain high-level image features that could be explicitly used for image classification.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"58 1\",\"pages\":\"1670-1678\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近的研究表明,在卷积神经网络(cnn)的激活模式中出现了语义对象部分检测器,但没有考虑到这种网络中的分布式多层神经激活。在这项工作中,我们提出了一种从CNN中提取分布式激活模式的新方法,并表明这些模式对应于高级视觉属性。我们提出了一个无监督学习模块,它位于预训练的CNN之上,并学习网络的分布式激活模式。我们利用弹性非负矩阵分解来分析预训练CNN对输入图像的响应,并提取显著图像区域。然后通过无监督深度嵌入聚类(DEC)框架对提取的显著区域的相应神经激活模式进行聚类。我们证明了这些分布式激活包含可以显式用于图像分类的高级图像特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining Distributed Neural Activations via Unsupervised Learning
Recent work has demonstrated the emergence of semantic object-part detectors in activation patterns of convolutional neural networks (CNNs), but did not account for the distributed multi-layer neural activations in such networks. In this work, we propose a novel method to extract distributed patterns of activations from a CNN and show that such patterns correspond to high-level visual attributes. We propose an unsupervised learning module that sits above a pre-trained CNN and learns distributed activation patterns of the network. We utilize elastic non-negative matrix factorization to analyze the responses of a pretrained CNN to an input image and extract salient image regions. The corresponding patterns of neural activations for the extracted salient regions are then clustered via unsupervised deep embedding for clustering (DEC) framework. We demonstrate that these distributed activations contain high-level image features that could be explicitly used for image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信