{"title":"基于NFV/SDN的毫米波嵌入式无人机接入基站动态布局方法","authors":"G. Tran, Masanori Ozasa, Jin Nakazato","doi":"10.3390/network2040029","DOIUrl":null,"url":null,"abstract":"In the event of a major disaster, base stations in the disaster area will cease to function, making it impossible to obtain life-saving information. Therefore, it is necessary to provide a wireless communication infrastructure as soon as possible. To cope with this situation, we focus on NFV/SDN (Network Function Virtualization/Software-Defined Networking)-enabled UAVs equipped with a wireless communication infrastructure to provide services. The access link between the UAV and the user is assumed to be equipped with a millimeter-wave interface to achieve high throughput. However, the use of millimeter-waves increases the effect of attenuation, making the deployment of UAVs problematic. In addition, if multiple UAVs are deployed in a limited frequency band, co-channel interference will occur between the UAVs, resulting in a decrease in the data rate. Therefore, in this paper, we propose a method that combines UAV placement and frequency division for a non-uniform user distribution in an environment with multiple UAVs. As a result, it is found that the offered data rate is improved by using our specific placement method, in terms of not only the average but also the outage user rate.","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"105 1","pages":"479-499"},"PeriodicalIF":3.6000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"NFV/SDN as an Enabler for Dynamic Placement Method of mmWave Embedded UAV Access Base Stations\",\"authors\":\"G. Tran, Masanori Ozasa, Jin Nakazato\",\"doi\":\"10.3390/network2040029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the event of a major disaster, base stations in the disaster area will cease to function, making it impossible to obtain life-saving information. Therefore, it is necessary to provide a wireless communication infrastructure as soon as possible. To cope with this situation, we focus on NFV/SDN (Network Function Virtualization/Software-Defined Networking)-enabled UAVs equipped with a wireless communication infrastructure to provide services. The access link between the UAV and the user is assumed to be equipped with a millimeter-wave interface to achieve high throughput. However, the use of millimeter-waves increases the effect of attenuation, making the deployment of UAVs problematic. In addition, if multiple UAVs are deployed in a limited frequency band, co-channel interference will occur between the UAVs, resulting in a decrease in the data rate. Therefore, in this paper, we propose a method that combines UAV placement and frequency division for a non-uniform user distribution in an environment with multiple UAVs. As a result, it is found that the offered data rate is improved by using our specific placement method, in terms of not only the average but also the outage user rate.\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"105 1\",\"pages\":\"479-499\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/network2040029\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/network2040029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
NFV/SDN as an Enabler for Dynamic Placement Method of mmWave Embedded UAV Access Base Stations
In the event of a major disaster, base stations in the disaster area will cease to function, making it impossible to obtain life-saving information. Therefore, it is necessary to provide a wireless communication infrastructure as soon as possible. To cope with this situation, we focus on NFV/SDN (Network Function Virtualization/Software-Defined Networking)-enabled UAVs equipped with a wireless communication infrastructure to provide services. The access link between the UAV and the user is assumed to be equipped with a millimeter-wave interface to achieve high throughput. However, the use of millimeter-waves increases the effect of attenuation, making the deployment of UAVs problematic. In addition, if multiple UAVs are deployed in a limited frequency band, co-channel interference will occur between the UAVs, resulting in a decrease in the data rate. Therefore, in this paper, we propose a method that combines UAV placement and frequency division for a non-uniform user distribution in an environment with multiple UAVs. As a result, it is found that the offered data rate is improved by using our specific placement method, in terms of not only the average but also the outage user rate.