A. Dimberg, Alexandros Karampatzakis, S. Tuit, Mohanraj Ramachandran, G. Fotaki, L. Hooren, Hua Huang, R. Lugano, Kaunisto Aura, P. Ellmark, S. Mangsbo, J. Schultze, M. Essand, Maria Georganaki
{"title":"A128:肿瘤内皮细胞对刺激cd40的免疫治疗产生IDO反应","authors":"A. Dimberg, Alexandros Karampatzakis, S. Tuit, Mohanraj Ramachandran, G. Fotaki, L. Hooren, Hua Huang, R. Lugano, Kaunisto Aura, P. Ellmark, S. Mangsbo, J. Schultze, M. Essand, Maria Georganaki","doi":"10.1158/2326-6074.CRICIMTEATIAACR18-A128","DOIUrl":null,"url":null,"abstract":"CD40, a tumor necrosis factor receptor superfamily member, is a promising immune-boosting target in cancer immunotherapy due to its role in promoting antitumor responses of immune cells. CD40 is also expressed on endothelial cells but the response of the tumor-associated vasculature to CD40-stimulating immunotherapy has not been studied. Herein, we have performed RNA-sequencing analysis of murine tumor endothelial cells (TECs) isolated from B16.F10 melanoma and MB49 bladder cancer treated with agonistic CD40 monoclonal antibody (mAb) or isotype control. Gene set and gene ontology enrichment analyses of the differentially expressed genes revealed that CD40 mAb treatment induces interferon-γ (IFNγ) signaling in the tumor microenvironment associated with up-regulation of immunosuppressive genes in TECs, including the enzyme indoleamine 2, 3-dioxygenase 1 (IDO1). Importantly, IDO1 was preferentially expressed in endothelial cells in the tumor and was positively correlated to infiltration of T-cells in the tumor microenvironment. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFNγ, but not in response to CD40-stimulation. Collectively, our data suggest that IDO1 up-regulation in TECs occurs as a response to T-cell activation. Combining CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth and increased survival of B16.F10 tumor-bearing mice, which was associated with increased activation of cytotoxic T-cells. Hereby, we have uncovered a novel immunosuppressive feedback mechanism, in which the tumor vasculature limits the response to cancer immunotherapy by up-regulating IDO1. Citation Format: Anna Dimberg, Alexandros Karampatzakis, Sander Tuit, Mohanraj Ramachandran, Grammatiki Fotaki, Luuk van Hooren, Hua Huang, Roberta Lugano, Kaunisto Aura, Peter Ellmark, Sara M Mangsbo, Joachim L. Schultze, Magnus Essand, Maria Georganaki. Tumor endothelial cells say IDO to CD40-stimulating immunotherapy [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A128.","PeriodicalId":18169,"journal":{"name":"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract A128: Tumor endothelial cells say IDO to CD40-stimulating immunotherapy\",\"authors\":\"A. Dimberg, Alexandros Karampatzakis, S. Tuit, Mohanraj Ramachandran, G. Fotaki, L. Hooren, Hua Huang, R. Lugano, Kaunisto Aura, P. Ellmark, S. Mangsbo, J. Schultze, M. Essand, Maria Georganaki\",\"doi\":\"10.1158/2326-6074.CRICIMTEATIAACR18-A128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CD40, a tumor necrosis factor receptor superfamily member, is a promising immune-boosting target in cancer immunotherapy due to its role in promoting antitumor responses of immune cells. CD40 is also expressed on endothelial cells but the response of the tumor-associated vasculature to CD40-stimulating immunotherapy has not been studied. Herein, we have performed RNA-sequencing analysis of murine tumor endothelial cells (TECs) isolated from B16.F10 melanoma and MB49 bladder cancer treated with agonistic CD40 monoclonal antibody (mAb) or isotype control. Gene set and gene ontology enrichment analyses of the differentially expressed genes revealed that CD40 mAb treatment induces interferon-γ (IFNγ) signaling in the tumor microenvironment associated with up-regulation of immunosuppressive genes in TECs, including the enzyme indoleamine 2, 3-dioxygenase 1 (IDO1). Importantly, IDO1 was preferentially expressed in endothelial cells in the tumor and was positively correlated to infiltration of T-cells in the tumor microenvironment. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFNγ, but not in response to CD40-stimulation. Collectively, our data suggest that IDO1 up-regulation in TECs occurs as a response to T-cell activation. Combining CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth and increased survival of B16.F10 tumor-bearing mice, which was associated with increased activation of cytotoxic T-cells. Hereby, we have uncovered a novel immunosuppressive feedback mechanism, in which the tumor vasculature limits the response to cancer immunotherapy by up-regulating IDO1. Citation Format: Anna Dimberg, Alexandros Karampatzakis, Sander Tuit, Mohanraj Ramachandran, Grammatiki Fotaki, Luuk van Hooren, Hua Huang, Roberta Lugano, Kaunisto Aura, Peter Ellmark, Sara M Mangsbo, Joachim L. Schultze, Magnus Essand, Maria Georganaki. Tumor endothelial cells say IDO to CD40-stimulating immunotherapy [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A128.\",\"PeriodicalId\":18169,\"journal\":{\"name\":\"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-A128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maintenance of Immune Balance: Effects of Targeted and Immune Therapies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-A128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
CD40是肿瘤坏死因子受体超家族成员,由于其促进免疫细胞抗肿瘤反应的作用,在癌症免疫治疗中是一个很有前途的免疫增强靶点。CD40也在内皮细胞上表达,但肿瘤相关血管对CD40刺激免疫疗法的反应尚未研究。在此,我们对B16分离的小鼠肿瘤内皮细胞(TECs)进行了rna测序分析。用激动性CD40单克隆抗体(mAb)或同型对照治疗F10黑色素瘤和MB49膀胱癌。差异表达基因的基因集和基因本体富集分析显示,CD40单抗治疗诱导肿瘤微环境中的干扰素-γ (IFNγ)信号通路,与tec中免疫抑制基因上调有关,包括吲哚胺2,3 -双加氧酶1 (IDO1)。重要的是,IDO1在肿瘤内皮细胞中优先表达,并与肿瘤微环境中t细胞的浸润呈正相关。在体外,内皮细胞响应t细胞来源的IFNγ上调IDO1,但不响应cd40刺激。总的来说,我们的数据表明,TECs中的IDO1上调是对t细胞激活的反应。CD40单抗与IDO1抑制剂epacadostat联合治疗可延缓肿瘤生长并提高B16的生存率。F10荷瘤小鼠,这与细胞毒性t细胞活化增加有关。因此,我们发现了一种新的免疫抑制反馈机制,其中肿瘤血管通过上调IDO1来限制对癌症免疫治疗的反应。引文格式:Anna Dimberg, Alexandros Karampatzakis, Sander Tuit, Mohanraj Ramachandran, Grammatiki Fotaki, Luuk van Hooren, Hua Huang, Roberta Lugano, Kaunisto Aura, Peter Ellmark, Sara M Mangsbo, Joachim L. Schultze, Magnus Essand, Maria Georganaki。肿瘤内皮细胞对刺激cd40的免疫治疗产生IDO反应[摘要]。第四届CRI-CIMT-EATI-AACR国际癌症免疫治疗会议:将科学转化为生存;2018年9月30日至10月3日;纽约,纽约。费城(PA): AACR;癌症免疫,2019;7(2增刊):摘要nr A128。
Abstract A128: Tumor endothelial cells say IDO to CD40-stimulating immunotherapy
CD40, a tumor necrosis factor receptor superfamily member, is a promising immune-boosting target in cancer immunotherapy due to its role in promoting antitumor responses of immune cells. CD40 is also expressed on endothelial cells but the response of the tumor-associated vasculature to CD40-stimulating immunotherapy has not been studied. Herein, we have performed RNA-sequencing analysis of murine tumor endothelial cells (TECs) isolated from B16.F10 melanoma and MB49 bladder cancer treated with agonistic CD40 monoclonal antibody (mAb) or isotype control. Gene set and gene ontology enrichment analyses of the differentially expressed genes revealed that CD40 mAb treatment induces interferon-γ (IFNγ) signaling in the tumor microenvironment associated with up-regulation of immunosuppressive genes in TECs, including the enzyme indoleamine 2, 3-dioxygenase 1 (IDO1). Importantly, IDO1 was preferentially expressed in endothelial cells in the tumor and was positively correlated to infiltration of T-cells in the tumor microenvironment. In vitro, endothelial cells up-regulated IDO1 in response to T-cell-derived IFNγ, but not in response to CD40-stimulation. Collectively, our data suggest that IDO1 up-regulation in TECs occurs as a response to T-cell activation. Combining CD40 mAb therapy with the IDO1 inhibitor epacadostat delayed tumor growth and increased survival of B16.F10 tumor-bearing mice, which was associated with increased activation of cytotoxic T-cells. Hereby, we have uncovered a novel immunosuppressive feedback mechanism, in which the tumor vasculature limits the response to cancer immunotherapy by up-regulating IDO1. Citation Format: Anna Dimberg, Alexandros Karampatzakis, Sander Tuit, Mohanraj Ramachandran, Grammatiki Fotaki, Luuk van Hooren, Hua Huang, Roberta Lugano, Kaunisto Aura, Peter Ellmark, Sara M Mangsbo, Joachim L. Schultze, Magnus Essand, Maria Georganaki. Tumor endothelial cells say IDO to CD40-stimulating immunotherapy [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A128.