蒸汽驱后CO2辅助蒸汽驱技术——以新疆油田J6区块为例

Xi Changfeng, Qi Zongyao, Liu Tong, Z. Yunjun, Zhao Fang, Qingsen Yu, D. Shen, Li Xiuluan
{"title":"蒸汽驱后CO2辅助蒸汽驱技术——以新疆油田J6区块为例","authors":"Xi Changfeng, Qi Zongyao, Liu Tong, Z. Yunjun, Zhao Fang, Qingsen Yu, D. Shen, Li Xiuluan","doi":"10.2118/196767-ms","DOIUrl":null,"url":null,"abstract":"\n Currently Block J6 is in the later stage of steam flooding after 27 years’ steam injection, its recovery factor is about 50%, and the water cut is more than 95%. Particularly, the present steam oil ratio is about 12 m3(CWE)/t which has reached the economic limit and is in ineffective development. Cores from four post steam flooding drilling wells show that only top 2-3m of the total 25-30m pay zone has a steam chamber which is the main steam channel and its residual oil saturation is about 20%, the other 22-27m pay zone is displaced by hot water and its oil saturation is 40-55%. A 3D physical simulation show the conventional steam flooding with full interval perforation quickly broke through from the top of reservoir, and the steam oil ratio rose rapidly from 5 m3(CWE)/t to 10 m3(CWE)/t. The recovery factor was only 20.1% at the time of steam breakthrough, and then it was in the phase of high steam oil ratio for a long time. During CO2 assisted steam flooding the whole perforated producer is switched into a low half perforated well, and the recovery factor increases from 20.1% to 81.1%, the steam oil ratio is 3.3m3(CWE)/t. There are three characteristics in CO2 assisted steam flooding stage, firstly there is a steam and CO2 assisted gravity drainage mode, steam chamber expands from the top 2-3cm to the total 20cm oil layer. Secondly, there is a stable emulsion foam oil, its water cut is 60-70%, CO2 liquid ratio is about 5:1 Sm3/t, CO2 is a kind of dispersed bubble so it is much more than the dissolved CO2 liquid ratio 2:1 Sm3/t. Thirdly, CO2 lows the heatloss to overburden and keeps the formation pressure. The calculation shows that the heat loss can be reduced by more than 10% in the top layer. A pilot test including 9 well patterns(49 wells) has been established, and its recovery factor will be up to 75%, and the steam oil ratio will up to 2 m3(CWE)/t, a good production performance is predicted optimistically.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CO2 Assisted Steam Flooding Technology after Steam Flooding - A Case Study in Block J6 of Xinjiang Oilfield\",\"authors\":\"Xi Changfeng, Qi Zongyao, Liu Tong, Z. Yunjun, Zhao Fang, Qingsen Yu, D. Shen, Li Xiuluan\",\"doi\":\"10.2118/196767-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Currently Block J6 is in the later stage of steam flooding after 27 years’ steam injection, its recovery factor is about 50%, and the water cut is more than 95%. Particularly, the present steam oil ratio is about 12 m3(CWE)/t which has reached the economic limit and is in ineffective development. Cores from four post steam flooding drilling wells show that only top 2-3m of the total 25-30m pay zone has a steam chamber which is the main steam channel and its residual oil saturation is about 20%, the other 22-27m pay zone is displaced by hot water and its oil saturation is 40-55%. A 3D physical simulation show the conventional steam flooding with full interval perforation quickly broke through from the top of reservoir, and the steam oil ratio rose rapidly from 5 m3(CWE)/t to 10 m3(CWE)/t. The recovery factor was only 20.1% at the time of steam breakthrough, and then it was in the phase of high steam oil ratio for a long time. During CO2 assisted steam flooding the whole perforated producer is switched into a low half perforated well, and the recovery factor increases from 20.1% to 81.1%, the steam oil ratio is 3.3m3(CWE)/t. There are three characteristics in CO2 assisted steam flooding stage, firstly there is a steam and CO2 assisted gravity drainage mode, steam chamber expands from the top 2-3cm to the total 20cm oil layer. Secondly, there is a stable emulsion foam oil, its water cut is 60-70%, CO2 liquid ratio is about 5:1 Sm3/t, CO2 is a kind of dispersed bubble so it is much more than the dissolved CO2 liquid ratio 2:1 Sm3/t. Thirdly, CO2 lows the heatloss to overburden and keeps the formation pressure. The calculation shows that the heat loss can be reduced by more than 10% in the top layer. A pilot test including 9 well patterns(49 wells) has been established, and its recovery factor will be up to 75%, and the steam oil ratio will up to 2 m3(CWE)/t, a good production performance is predicted optimistically.\",\"PeriodicalId\":10977,\"journal\":{\"name\":\"Day 2 Wed, October 23, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 23, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196767-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196767-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

J6区块注汽27年,目前处于蒸汽驱后期,采收率约为50%,含水率在95%以上。特别是目前的汽油比约为12 m3 /t,已达到经济极限,开发效果不佳。蒸汽驱后4口井的岩心显示,在25 ~ 30m的产层中,只有顶部2 ~ 3m有蒸汽室,为主蒸汽通道,残余油饱和度约为20%,其余22 ~ 27m产层为热水驱替,含油饱和度为40 ~ 55%。三维物理模拟结果表明,常规蒸汽驱全段射孔从储层顶部迅速突破,汽油比从5 m3 /t迅速上升到10 m3 /t。蒸汽突破时采收率仅为20.1%,此后长期处于高汽油比阶段。在CO2辅助蒸汽驱过程中,将整口射孔采油井改为低半射孔井,采收率由20.1%提高到81.1%,汽油比为3.3m3 /t。CO2辅助蒸汽驱阶段有三个特点:一是蒸汽- CO2辅助重力泄油模式,蒸汽室从顶部2-3cm扩展到总20cm油层;其次,有一种稳定的乳化液泡沫油,其含水率为60-70%,CO2液比约为5:1 Sm3/t, CO2是一种分散的气泡,所以它的溶解性CO2液比远远大于2:1 Sm3/t。第三,CO2降低了覆盖层的热损失,保持了地层压力。计算表明,在顶层可使热损失降低10%以上。建立了9口井模式(49口井)的中试,采收率可达75%,汽油比可达2 m3 /t,乐观预测生产效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO2 Assisted Steam Flooding Technology after Steam Flooding - A Case Study in Block J6 of Xinjiang Oilfield
Currently Block J6 is in the later stage of steam flooding after 27 years’ steam injection, its recovery factor is about 50%, and the water cut is more than 95%. Particularly, the present steam oil ratio is about 12 m3(CWE)/t which has reached the economic limit and is in ineffective development. Cores from four post steam flooding drilling wells show that only top 2-3m of the total 25-30m pay zone has a steam chamber which is the main steam channel and its residual oil saturation is about 20%, the other 22-27m pay zone is displaced by hot water and its oil saturation is 40-55%. A 3D physical simulation show the conventional steam flooding with full interval perforation quickly broke through from the top of reservoir, and the steam oil ratio rose rapidly from 5 m3(CWE)/t to 10 m3(CWE)/t. The recovery factor was only 20.1% at the time of steam breakthrough, and then it was in the phase of high steam oil ratio for a long time. During CO2 assisted steam flooding the whole perforated producer is switched into a low half perforated well, and the recovery factor increases from 20.1% to 81.1%, the steam oil ratio is 3.3m3(CWE)/t. There are three characteristics in CO2 assisted steam flooding stage, firstly there is a steam and CO2 assisted gravity drainage mode, steam chamber expands from the top 2-3cm to the total 20cm oil layer. Secondly, there is a stable emulsion foam oil, its water cut is 60-70%, CO2 liquid ratio is about 5:1 Sm3/t, CO2 is a kind of dispersed bubble so it is much more than the dissolved CO2 liquid ratio 2:1 Sm3/t. Thirdly, CO2 lows the heatloss to overburden and keeps the formation pressure. The calculation shows that the heat loss can be reduced by more than 10% in the top layer. A pilot test including 9 well patterns(49 wells) has been established, and its recovery factor will be up to 75%, and the steam oil ratio will up to 2 m3(CWE)/t, a good production performance is predicted optimistically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信