具有退化哈密顿量的一维哈密顿-雅可比方程解的存在性

Q4 Mathematics
Tomasz Cieślak, H. Wakui
{"title":"具有退化哈密顿量的一维哈密顿-雅可比方程解的存在性","authors":"Tomasz Cieślak, H. Wakui","doi":"10.4064/am2407-7-2020","DOIUrl":null,"url":null,"abstract":"We study a one-dimensional Hamilton–Jacobi initial value problem for a degenerate Hamiltonian occurring in multipeakon dynamics. Such a degenerate problem does not obey the usual viscosity solutions theory; viability type extensions do not seem to cover it either. Thanks to a particular change of variables, we reduce the problem to the case where Hopf theory is sufficient. Moreover, we show that our solutions are solutions in the viscosity sense.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence of solutions to a one-dimensional Hamilton–Jacobi equation with a degenerate Hamiltonian\",\"authors\":\"Tomasz Cieślak, H. Wakui\",\"doi\":\"10.4064/am2407-7-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a one-dimensional Hamilton–Jacobi initial value problem for a degenerate Hamiltonian occurring in multipeakon dynamics. Such a degenerate problem does not obey the usual viscosity solutions theory; viability type extensions do not seem to cover it either. Thanks to a particular change of variables, we reduce the problem to the case where Hopf theory is sufficient. Moreover, we show that our solutions are solutions in the viscosity sense.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2407-7-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2407-7-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

研究了多峰动力学中退化哈密顿量的一维Hamilton-Jacobi初值问题。这种退化问题不服从通常的粘度解理论;可行性类型扩展似乎也没有涵盖它。由于变量的特殊变化,我们将问题简化为Hopf理论是充分的。此外,我们证明了我们的解是粘度意义上的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions to a one-dimensional Hamilton–Jacobi equation with a degenerate Hamiltonian
We study a one-dimensional Hamilton–Jacobi initial value problem for a degenerate Hamiltonian occurring in multipeakon dynamics. Such a degenerate problem does not obey the usual viscosity solutions theory; viability type extensions do not seem to cover it either. Thanks to a particular change of variables, we reduce the problem to the case where Hopf theory is sufficient. Moreover, we show that our solutions are solutions in the viscosity sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信