多项式模a素数的根分布的注释II

Y. Kitaoka
{"title":"多项式模a素数的根分布的注释II","authors":"Y. Kitaoka","doi":"10.2478/udt-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract Let f (x) be a monic polynomial with integer coefficients and 0 ≤ r1 ≤ ··· ≤ rn <p its roots modulo a prime p. We generalize a conjecture on the distribution of roots ri with additional congruence relations ri ≡ Ri mod L from the case that f has no non-trivial linear relation among roots to the case that f has a non-trivial linear relation.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"40 1","pages":"104 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Notes on the Distribution of Roots Modulo a Prime of a Polynomial II\",\"authors\":\"Y. Kitaoka\",\"doi\":\"10.2478/udt-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let f (x) be a monic polynomial with integer coefficients and 0 ≤ r1 ≤ ··· ≤ rn <p its roots modulo a prime p. We generalize a conjecture on the distribution of roots ri with additional congruence relations ri ≡ Ri mod L from the case that f has no non-trivial linear relation among roots to the case that f has a non-trivial linear relation.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"40 1\",\"pages\":\"104 - 87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要设f (x)是一个系数为整数的单多项式,且0≤r1≤···≤rn 本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Notes on the Distribution of Roots Modulo a Prime of a Polynomial II
Abstract Let f (x) be a monic polynomial with integer coefficients and 0 ≤ r1 ≤ ··· ≤ rn

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信