在电厂开关柜回路中引入发电机-变压器组辅助断路器以节约能源

Q3 Energy
A. Barukin, M. Kletsel’, A. Z. Dinmukhanbetova, D. Amirbek
{"title":"在电厂开关柜回路中引入发电机-变压器组辅助断路器以节约能源","authors":"A. Barukin, M. Kletsel’, A. Z. Dinmukhanbetova, D. Amirbek","doi":"10.21122/1029-7448-2023-66-4-333-343","DOIUrl":null,"url":null,"abstract":"A need in finding of new ways of energy saving at open switchgears of power plants is substantiated. In order to increase energy saving efficiency, an auxiliary breaker is suggested to be inserted between a transformer of a block and its two high-voltage circuit breakers. The reasonability of such an insertion is proved on the basis of comparing of calculations resultsof under-discharge of electricity (UE) by the tabular-logical method (Yu. B. Guk) of the obtained schemes and of the traditional ones. For the calculations, the conditions that arose due to the change in the main circuit of a power plant are studied. Also, equations are given for calculation of a decrease in UE, damage due to it during reconstruction, and costs for the construction of a power plant (the costs are assumed to be the same in all options). Russian statistical data and the predicted failure rate λEV of a 750 kV SF6 circuit breaker are used. An option of the introduction of an SF6 circuit breaker with and without replacement of other circuit breakers with SF6 circuit breakers is considered. The results of calculations of UE, damage, and costs for the introduction suggested are tabulated, where changes in them due to the introduction of the circuit breaker are estimated for 18 ring circuits and 17 “3/2” and “4/3” circuits of 330–750 kV switchgears at condensation, nuclear, and hydroelectric power plants. It is demonstrated that the presence of a generator breaker in the blocks makes it possible to reduce these energy-saving efficiency indicators several times. A technique for determining the failure rate of a hypothetical circuit breaker, which, in the case of traditional replacement, is capable of producing the same effect as an SF6 circuit breaker inserted is proposed. An example of determining this frequency is given. Results of the calculated reduction of UE, damage and costs for the case of an air circuit breaker having been substituted to an SF6 circuit breaker are presented.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction of an Auxiliary Breaker into the Generator-Transformer Block for Energy Saving in Open Switchgear Circuits of Power Plants\",\"authors\":\"A. Barukin, M. Kletsel’, A. Z. Dinmukhanbetova, D. Amirbek\",\"doi\":\"10.21122/1029-7448-2023-66-4-333-343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A need in finding of new ways of energy saving at open switchgears of power plants is substantiated. In order to increase energy saving efficiency, an auxiliary breaker is suggested to be inserted between a transformer of a block and its two high-voltage circuit breakers. The reasonability of such an insertion is proved on the basis of comparing of calculations resultsof under-discharge of electricity (UE) by the tabular-logical method (Yu. B. Guk) of the obtained schemes and of the traditional ones. For the calculations, the conditions that arose due to the change in the main circuit of a power plant are studied. Also, equations are given for calculation of a decrease in UE, damage due to it during reconstruction, and costs for the construction of a power plant (the costs are assumed to be the same in all options). Russian statistical data and the predicted failure rate λEV of a 750 kV SF6 circuit breaker are used. An option of the introduction of an SF6 circuit breaker with and without replacement of other circuit breakers with SF6 circuit breakers is considered. The results of calculations of UE, damage, and costs for the introduction suggested are tabulated, where changes in them due to the introduction of the circuit breaker are estimated for 18 ring circuits and 17 “3/2” and “4/3” circuits of 330–750 kV switchgears at condensation, nuclear, and hydroelectric power plants. It is demonstrated that the presence of a generator breaker in the blocks makes it possible to reduce these energy-saving efficiency indicators several times. A technique for determining the failure rate of a hypothetical circuit breaker, which, in the case of traditional replacement, is capable of producing the same effect as an SF6 circuit breaker inserted is proposed. An example of determining this frequency is given. Results of the calculated reduction of UE, damage and costs for the case of an air circuit breaker having been substituted to an SF6 circuit breaker are presented.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2023-66-4-333-343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-66-4-333-343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

提出了探索电厂开关柜节能新途径的必要性。为提高节能效率,建议在小区变压器与其两个高压断路器之间加装一个辅助断路器。通过对表逻辑法计算欠放电(UE)结果的比较,证明了这种插入的合理性。B. Guk)获得的方案和传统的方案。在计算中,研究了某电厂主回路发生变化所引起的情况。此外,还给出了计算UE减少量、重建过程中UE造成的损害以及电厂建设成本的公式(假设所有选项的成本相同)。采用俄罗斯统计数据和750kv SF6断路器的预测故障率λEV。考虑引入SF6断路器的选项,但不考虑用SF6断路器替换其他断路器。所建议的引入的UE、损坏和成本的计算结果列于表中,其中估计了由于引入断路器而导致的18个环形电路和17个“3/2”和“4/3”电路在冷凝、核能和水力发电厂的330-750 kV开关柜中。结果表明,在砌块中安装发电机断路器可以将这些节能效率指标降低几倍。提出了一种确定假设断路器故障率的技术,该断路器在传统更换的情况下能够产生与插入的SF6断路器相同的效果。给出了确定该频率的一个例子。给出了以SF6断路器代替空气断路器的情况下,计算的UE、损坏和成本降低的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction of an Auxiliary Breaker into the Generator-Transformer Block for Energy Saving in Open Switchgear Circuits of Power Plants
A need in finding of new ways of energy saving at open switchgears of power plants is substantiated. In order to increase energy saving efficiency, an auxiliary breaker is suggested to be inserted between a transformer of a block and its two high-voltage circuit breakers. The reasonability of such an insertion is proved on the basis of comparing of calculations resultsof under-discharge of electricity (UE) by the tabular-logical method (Yu. B. Guk) of the obtained schemes and of the traditional ones. For the calculations, the conditions that arose due to the change in the main circuit of a power plant are studied. Also, equations are given for calculation of a decrease in UE, damage due to it during reconstruction, and costs for the construction of a power plant (the costs are assumed to be the same in all options). Russian statistical data and the predicted failure rate λEV of a 750 kV SF6 circuit breaker are used. An option of the introduction of an SF6 circuit breaker with and without replacement of other circuit breakers with SF6 circuit breakers is considered. The results of calculations of UE, damage, and costs for the introduction suggested are tabulated, where changes in them due to the introduction of the circuit breaker are estimated for 18 ring circuits and 17 “3/2” and “4/3” circuits of 330–750 kV switchgears at condensation, nuclear, and hydroelectric power plants. It is demonstrated that the presence of a generator breaker in the blocks makes it possible to reduce these energy-saving efficiency indicators several times. A technique for determining the failure rate of a hypothetical circuit breaker, which, in the case of traditional replacement, is capable of producing the same effect as an SF6 circuit breaker inserted is proposed. An example of determining this frequency is given. Results of the calculated reduction of UE, damage and costs for the case of an air circuit breaker having been substituted to an SF6 circuit breaker are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信