具有有利压力梯度的稳定Prandtl方程的全局C∞正则性

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Yue Wang , Zhifei Zhang
{"title":"具有有利压力梯度的稳定Prandtl方程的全局C∞正则性","authors":"Yue Wang ,&nbsp;Zhifei Zhang","doi":"10.1016/j.anihpc.2021.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>In the case of <span><em>favorable </em><em>pressure gradient</em></span>, Oleinik obtained the <em>global-in-x</em> solutions to the steady Prandtl equations with <em>low regularity</em> (see Oleinik and Samokhin <span>[9]</span>, P.21, Theorem 2.1.1). Due to the degeneracy of the equation near the boundary, the question of higher regularity of Oleinik's solutions remains open. See the <em>local-in-x</em> higher regularity established by Guo and Iyer <span>[5]</span>. In this paper, we prove that Oleinik's solutions are smooth up to the boundary <span><math><mi>y</mi><mo>=</mo><mn>0</mn></math></span> for any <span><math><mi>x</mi><mo>&gt;</mo><mn>0</mn></math></span>, using further maximum principle techniques. Moreover, since Oleinik only assumed low regularity on the data prescribed at <span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span>, our result implies instant smoothness (in the steady case, <span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span> is often considered as initial time).</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 6","pages":"Pages 1989-2004"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.007","citationCount":"9","resultStr":"{\"title\":\"Global C∞ regularity of the steady Prandtl equation with favorable pressure gradient\",\"authors\":\"Yue Wang ,&nbsp;Zhifei Zhang\",\"doi\":\"10.1016/j.anihpc.2021.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the case of <span><em>favorable </em><em>pressure gradient</em></span>, Oleinik obtained the <em>global-in-x</em> solutions to the steady Prandtl equations with <em>low regularity</em> (see Oleinik and Samokhin <span>[9]</span>, P.21, Theorem 2.1.1). Due to the degeneracy of the equation near the boundary, the question of higher regularity of Oleinik's solutions remains open. See the <em>local-in-x</em> higher regularity established by Guo and Iyer <span>[5]</span>. In this paper, we prove that Oleinik's solutions are smooth up to the boundary <span><math><mi>y</mi><mo>=</mo><mn>0</mn></math></span> for any <span><math><mi>x</mi><mo>&gt;</mo><mn>0</mn></math></span>, using further maximum principle techniques. Moreover, since Oleinik only assumed low regularity on the data prescribed at <span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span>, our result implies instant smoothness (in the steady case, <span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span> is often considered as initial time).</p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 6\",\"pages\":\"Pages 1989-2004\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.007\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144921000287\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000287","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

在压力梯度有利的情况下,Oleinik得到了具有低正则性的稳定Prandtl方程的全局In -x解(参见Oleinik and Samokhin [9], P.21, Theorem 2.1.1)。由于方程在边界附近的简并性,Oleinik解的高正则性问题仍然没有解决。参见Guo和Iyer b[5]建立的local-in-x高正则性。本文利用进一步的极大原理技术,证明了对于任意x>0, Oleinik解在边界y=0处是光滑的。此外,由于Oleinik只假设在x=0处规定的数据具有低规律性,因此我们的结果意味着即时平滑(在稳定情况下,x=0通常被认为是初始时间)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global C∞ regularity of the steady Prandtl equation with favorable pressure gradient

In the case of favorable pressure gradient, Oleinik obtained the global-in-x solutions to the steady Prandtl equations with low regularity (see Oleinik and Samokhin [9], P.21, Theorem 2.1.1). Due to the degeneracy of the equation near the boundary, the question of higher regularity of Oleinik's solutions remains open. See the local-in-x higher regularity established by Guo and Iyer [5]. In this paper, we prove that Oleinik's solutions are smooth up to the boundary y=0 for any x>0, using further maximum principle techniques. Moreover, since Oleinik only assumed low regularity on the data prescribed at x=0, our result implies instant smoothness (in the steady case, x=0 is often considered as initial time).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信