氩离子辐照下sic包覆C/C复合材料的微观组织演变

IF 0.4 Q4 NUCLEAR SCIENCE & TECHNOLOGY
Xiangmin Xie, Long Yan, Guodong Cheng, Xian Tang
{"title":"氩离子辐照下sic包覆C/C复合材料的微观组织演变","authors":"Xiangmin Xie, Long Yan, Guodong Cheng, Xian Tang","doi":"10.1115/icone29-90325","DOIUrl":null,"url":null,"abstract":"\n SiC coatings have been used to improve the oxidation resistance and stability of C/C composites in high-temperature reactors. However, the irradiation-induced surface structural transformations of SiC-coated C/C composites have been rarely studied. Herein, chemical vapor reaction (CVR) SiC-coated C/C composites were irradiated with 300 keV argon ions at room temperature with irradiation doses ranging from 5 × 1015–1 × 1017 ions·cm−2. The damage patterns of the pristine C/C composites and SiC-coated C/C composites were observed using scanning electron microscopy, and the shape and size evolutions of the CVR-SiC particles were investigated as a function of the irradiation dose. The results revealed that the pristine C/C composites were severely damaged after ion irradiation, and a large number of defects and pores formed on the surface. In contrast, the ion-irradiated SiC-coated C/C composites showed an undamaged surface. As the irradiation dose increased from 0 to 1 × 1017 ions·cm−2, the CVR-SiC particles were transformed from irregular to spherical shapes, and the average size of the SiC particles was reduced from 22 to 5 μm. The size reduction and spheroidization of the SiC particles under irradiation were attributed to the amorphous transformation of SiC. This study can provide deeper insight into the irradiation behavior of SiC-coated C/C composites in high-temperature reactors.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"102 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural Evolution of SiC-Coated C/C Composites Under Argon Ion Irradiation\",\"authors\":\"Xiangmin Xie, Long Yan, Guodong Cheng, Xian Tang\",\"doi\":\"10.1115/icone29-90325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n SiC coatings have been used to improve the oxidation resistance and stability of C/C composites in high-temperature reactors. However, the irradiation-induced surface structural transformations of SiC-coated C/C composites have been rarely studied. Herein, chemical vapor reaction (CVR) SiC-coated C/C composites were irradiated with 300 keV argon ions at room temperature with irradiation doses ranging from 5 × 1015–1 × 1017 ions·cm−2. The damage patterns of the pristine C/C composites and SiC-coated C/C composites were observed using scanning electron microscopy, and the shape and size evolutions of the CVR-SiC particles were investigated as a function of the irradiation dose. The results revealed that the pristine C/C composites were severely damaged after ion irradiation, and a large number of defects and pores formed on the surface. In contrast, the ion-irradiated SiC-coated C/C composites showed an undamaged surface. As the irradiation dose increased from 0 to 1 × 1017 ions·cm−2, the CVR-SiC particles were transformed from irregular to spherical shapes, and the average size of the SiC particles was reduced from 22 to 5 μm. The size reduction and spheroidization of the SiC particles under irradiation were attributed to the amorphous transformation of SiC. This study can provide deeper insight into the irradiation behavior of SiC-coated C/C composites in high-temperature reactors.\",\"PeriodicalId\":36762,\"journal\":{\"name\":\"Journal of Nuclear Fuel Cycle and Waste Technology\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Fuel Cycle and Waste Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-90325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-90325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SiC涂层用于提高C/C复合材料在高温反应器中的抗氧化性和稳定性。然而,辐照诱导的sic涂层C/C复合材料表面结构转变的研究很少。在室温下,用300 keV的氩离子辐照化学气相反应(CVR) sic包覆C/C复合材料,辐照剂量为5 × 1015-1 × 1017离子·cm−2。利用扫描电镜观察了原始C/C复合材料和sic包覆C/C复合材料的损伤模式,并研究了CVR-SiC颗粒的形状和尺寸随辐照剂量的变化规律。结果表明:离子辐照后,原始C/C复合材料损伤严重,表面形成大量的缺陷和气孔;相比之下,离子辐照的sic涂层C/C复合材料表面没有损伤。随着辐照剂量从0 × 1017 ions·cm−2增加到1 × 1017 ions·cm−2,CVR-SiC颗粒由不规则形状转变为球形,颗粒的平均尺寸由22 μm减小到5 μm。辐照作用下碳化硅颗粒的尺寸减小和球化是由于碳化硅的非晶态转变所致。该研究为进一步了解sic涂层C/C复合材料在高温反应器中的辐照行为提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural Evolution of SiC-Coated C/C Composites Under Argon Ion Irradiation
SiC coatings have been used to improve the oxidation resistance and stability of C/C composites in high-temperature reactors. However, the irradiation-induced surface structural transformations of SiC-coated C/C composites have been rarely studied. Herein, chemical vapor reaction (CVR) SiC-coated C/C composites were irradiated with 300 keV argon ions at room temperature with irradiation doses ranging from 5 × 1015–1 × 1017 ions·cm−2. The damage patterns of the pristine C/C composites and SiC-coated C/C composites were observed using scanning electron microscopy, and the shape and size evolutions of the CVR-SiC particles were investigated as a function of the irradiation dose. The results revealed that the pristine C/C composites were severely damaged after ion irradiation, and a large number of defects and pores formed on the surface. In contrast, the ion-irradiated SiC-coated C/C composites showed an undamaged surface. As the irradiation dose increased from 0 to 1 × 1017 ions·cm−2, the CVR-SiC particles were transformed from irregular to spherical shapes, and the average size of the SiC particles was reduced from 22 to 5 μm. The size reduction and spheroidization of the SiC particles under irradiation were attributed to the amorphous transformation of SiC. This study can provide deeper insight into the irradiation behavior of SiC-coated C/C composites in high-temperature reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
25.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信