Federico Lucci , Mirmohammad Miri , Adel Saki , John Charles White , Giancarlo Della Ventura , Hossein Azizi
{"title":"中侏罗世 Cheshmeh-Ghasaban 高镁辉长岩(伊朗西北部哈马丹):受羽状岩影响的大陆内断裂事件?","authors":"Federico Lucci , Mirmohammad Miri , Adel Saki , John Charles White , Giancarlo Della Ventura , Hossein Azizi","doi":"10.1016/j.chemer.2023.126011","DOIUrl":null,"url":null,"abstract":"<div><p><span>The Jurassic mafic to felsic magmatism affecting the older Ediacaran-to-Cambrian basement of the Sanandaj-Sirjan Zone of Iran has been traditionally interpreted as the product of arc and/or back-arc magmatism related to the early stages of Neo-Tethys subduction beneath Iran in the </span>early Jurassic<span><span>. Recent works and new compositional and geochronological data have started challenging this commonly accepted model in favor of scenarios involving continental rifting, mantle plume activity, and/or passive margin formation. In the Hamedan area of the central sector of the Sanandaj-Sirjan Zone, the Jurassic Cheshmeh-Ghasaban gabbro (ca. 165 Ma) is a key formation to better understand the tectono-magmatic framework of the whole area. Our new data, combined with the existing literature, suggest a transitional to alkaline OIB-like compositional character for this gabbro similar to the nearby but slightly younger (ca. 145 Ma) Panjeh and Ghalaylan basaltic complexes (in the Songhor-Ghorveh area). When integrated with the existing geochemical data of Jurassic </span>mafic rocks from the central Sanandaj-Sirjan Zone, our results point to a scenario of intracontinental rifting, possibly involving the upwelling old metasomatized (by Proto-Tethys subduction?) mantle or mantle-plume activity.</span></p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"83 4","pages":"Article 126011"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Middle Jurassic Cheshmeh-Ghasaban High-Mg gabbro (Hamedan, NW Iran): A plume-influenced intracontinental rifting event?\",\"authors\":\"Federico Lucci , Mirmohammad Miri , Adel Saki , John Charles White , Giancarlo Della Ventura , Hossein Azizi\",\"doi\":\"10.1016/j.chemer.2023.126011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The Jurassic mafic to felsic magmatism affecting the older Ediacaran-to-Cambrian basement of the Sanandaj-Sirjan Zone of Iran has been traditionally interpreted as the product of arc and/or back-arc magmatism related to the early stages of Neo-Tethys subduction beneath Iran in the </span>early Jurassic<span><span>. Recent works and new compositional and geochronological data have started challenging this commonly accepted model in favor of scenarios involving continental rifting, mantle plume activity, and/or passive margin formation. In the Hamedan area of the central sector of the Sanandaj-Sirjan Zone, the Jurassic Cheshmeh-Ghasaban gabbro (ca. 165 Ma) is a key formation to better understand the tectono-magmatic framework of the whole area. Our new data, combined with the existing literature, suggest a transitional to alkaline OIB-like compositional character for this gabbro similar to the nearby but slightly younger (ca. 145 Ma) Panjeh and Ghalaylan basaltic complexes (in the Songhor-Ghorveh area). When integrated with the existing geochemical data of Jurassic </span>mafic rocks from the central Sanandaj-Sirjan Zone, our results point to a scenario of intracontinental rifting, possibly involving the upwelling old metasomatized (by Proto-Tethys subduction?) mantle or mantle-plume activity.</span></p></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"83 4\",\"pages\":\"Article 126011\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281923000624\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281923000624","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Middle Jurassic Cheshmeh-Ghasaban High-Mg gabbro (Hamedan, NW Iran): A plume-influenced intracontinental rifting event?
The Jurassic mafic to felsic magmatism affecting the older Ediacaran-to-Cambrian basement of the Sanandaj-Sirjan Zone of Iran has been traditionally interpreted as the product of arc and/or back-arc magmatism related to the early stages of Neo-Tethys subduction beneath Iran in the early Jurassic. Recent works and new compositional and geochronological data have started challenging this commonly accepted model in favor of scenarios involving continental rifting, mantle plume activity, and/or passive margin formation. In the Hamedan area of the central sector of the Sanandaj-Sirjan Zone, the Jurassic Cheshmeh-Ghasaban gabbro (ca. 165 Ma) is a key formation to better understand the tectono-magmatic framework of the whole area. Our new data, combined with the existing literature, suggest a transitional to alkaline OIB-like compositional character for this gabbro similar to the nearby but slightly younger (ca. 145 Ma) Panjeh and Ghalaylan basaltic complexes (in the Songhor-Ghorveh area). When integrated with the existing geochemical data of Jurassic mafic rocks from the central Sanandaj-Sirjan Zone, our results point to a scenario of intracontinental rifting, possibly involving the upwelling old metasomatized (by Proto-Tethys subduction?) mantle or mantle-plume activity.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry