双参数威布尔分布尺度参数的置信区间:单样本问题

M. Abu-Shawiesh
{"title":"双参数威布尔分布尺度参数的置信区间:单样本问题","authors":"M. Abu-Shawiesh","doi":"10.12732/ijam.v33i3.7","DOIUrl":null,"url":null,"abstract":"Abstract: The problem of interval estimating for the scale parameter θ in a two parameter Weibull distribution is addressed. The pivotal quantities whose percentiles can be used to construct confidence limits for the scale parameter θ are derived. Therefore in this paper, an exact, asymptotic and approximate (1−α)100% confidence intervals for the scale parameter θ of the two parameter Weibull distribution for the case of the one sample problem are derived. The three confidence intervals are simple and easy to compute. A Monte Carlo simulation study is performed to compare the efficiencies of the three confidence interval methods in terms of two criteria, coverage probabilities and average widths. The simulation results showed that the proposed confidence intervals perform well in terms of coverage probability and average width. Additionally, when the three methods are compared, it is found that the performance of the method depends on the value of the shape parameter β, scale parameters θ and sample size n used. The three methods are illustrated using a real-life data set which also supported the findings of the simulation study to some extent.","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"333 1","pages":"451"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONFIDENCE INTERVALS FOR THE SCALE PARAMETER OF A TWO-PARAMETER WEIBULL DISTRIBUTION: ONE SAMPLE PROBLEM\",\"authors\":\"M. Abu-Shawiesh\",\"doi\":\"10.12732/ijam.v33i3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The problem of interval estimating for the scale parameter θ in a two parameter Weibull distribution is addressed. The pivotal quantities whose percentiles can be used to construct confidence limits for the scale parameter θ are derived. Therefore in this paper, an exact, asymptotic and approximate (1−α)100% confidence intervals for the scale parameter θ of the two parameter Weibull distribution for the case of the one sample problem are derived. The three confidence intervals are simple and easy to compute. A Monte Carlo simulation study is performed to compare the efficiencies of the three confidence interval methods in terms of two criteria, coverage probabilities and average widths. The simulation results showed that the proposed confidence intervals perform well in terms of coverage probability and average width. Additionally, when the three methods are compared, it is found that the performance of the method depends on the value of the shape parameter β, scale parameters θ and sample size n used. The three methods are illustrated using a real-life data set which also supported the findings of the simulation study to some extent.\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"333 1\",\"pages\":\"451\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v33i3.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v33i3.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:研究了双参数威布尔分布中尺度参数θ的区间估计问题。导出了关键量,其百分位数可用于构造尺度参数θ的置信限。因此,本文导出了单样本情况下双参数威布尔分布的尺度参数θ的精确、渐近和近似(1−α)100%置信区间。这三个置信区间简单,易于计算。通过蒙特卡罗模拟研究,比较了三种置信区间方法在覆盖概率和平均宽度两个标准方面的效率。仿真结果表明,所提出的置信区间在覆盖概率和平均宽度方面表现良好。此外,当比较三种方法时,发现该方法的性能取决于所使用的形状参数β,尺度参数θ和样本量n的值。这三种方法是用一个真实的数据集来说明的,这也在一定程度上支持了模拟研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONFIDENCE INTERVALS FOR THE SCALE PARAMETER OF A TWO-PARAMETER WEIBULL DISTRIBUTION: ONE SAMPLE PROBLEM
Abstract: The problem of interval estimating for the scale parameter θ in a two parameter Weibull distribution is addressed. The pivotal quantities whose percentiles can be used to construct confidence limits for the scale parameter θ are derived. Therefore in this paper, an exact, asymptotic and approximate (1−α)100% confidence intervals for the scale parameter θ of the two parameter Weibull distribution for the case of the one sample problem are derived. The three confidence intervals are simple and easy to compute. A Monte Carlo simulation study is performed to compare the efficiencies of the three confidence interval methods in terms of two criteria, coverage probabilities and average widths. The simulation results showed that the proposed confidence intervals perform well in terms of coverage probability and average width. Additionally, when the three methods are compared, it is found that the performance of the method depends on the value of the shape parameter β, scale parameters θ and sample size n used. The three methods are illustrated using a real-life data set which also supported the findings of the simulation study to some extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信