{"title":"基于桥式起重机模型的自适应控制规律研究","authors":"D. N. Aksamentov","doi":"10.17588/2072-2672.2022.2.047-057","DOIUrl":null,"url":null,"abstract":"Nowadays, cargo cranes are widely used in various areas of industries. Many of cranes use suspended load fastening, which is associated with load swinging during transportation. Load swinging is most often caused by acceleration or deceleration of the crane trolley, less often it occurs due to external disturbances, such as wind. One of the key directions of the development of this kind of cranes is the development of an automated control system that can dampen pendular oscillations of the load. At present, a considerable number of control systems have been developed, but most of them require preset adjustment of specific parameters of the transported load. The task of this study is to develop and debug a control algorithm using a model of an overhead crane of previously developed adaptive control law that can provide fine positioning and damping of load oscillations under the current parametric uncertainty. The study using the pilot plant will allow us to determine and analyze the features of the implementation of the control law before its application for industrial cranes. An adaptive control law is studied using the model of overhead crane under conditions of a current parametric uncertainty of the load and external disturbances. This control method is based on an adaptive control approach with an identifier and an implicit reference model using “simplified” adaptation conditions. A previously developed adaptive control law for an overhead crane is described. An experimental model of an overhead crane is described. An algorithm for adaptive control of an overhead crane model has been developed. The first experimental studies of the proposed control method have been carried out. They confirm its performance in real conditions. The results of experimental tests have shown the effectiveness of the adaptive control law. The system ensures fine motion of the load in a short period of time, dampens the pendular oscillations of the load during acceleration and deceleration of the trolley, as well as during external disturbances. The adaptive control law allows you to move the load to the designated position and dampen the pendular oscillations with minimal preset adjustment of the control system. Since the identification of parameters occurs at the current time, the changes of the parameters of the load and the length of suspension do not affect the quality of control.","PeriodicalId":23635,"journal":{"name":"Vestnik IGEU","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of adaptive control law of overhead crane using its model\",\"authors\":\"D. N. Aksamentov\",\"doi\":\"10.17588/2072-2672.2022.2.047-057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, cargo cranes are widely used in various areas of industries. Many of cranes use suspended load fastening, which is associated with load swinging during transportation. Load swinging is most often caused by acceleration or deceleration of the crane trolley, less often it occurs due to external disturbances, such as wind. One of the key directions of the development of this kind of cranes is the development of an automated control system that can dampen pendular oscillations of the load. At present, a considerable number of control systems have been developed, but most of them require preset adjustment of specific parameters of the transported load. The task of this study is to develop and debug a control algorithm using a model of an overhead crane of previously developed adaptive control law that can provide fine positioning and damping of load oscillations under the current parametric uncertainty. The study using the pilot plant will allow us to determine and analyze the features of the implementation of the control law before its application for industrial cranes. An adaptive control law is studied using the model of overhead crane under conditions of a current parametric uncertainty of the load and external disturbances. This control method is based on an adaptive control approach with an identifier and an implicit reference model using “simplified” adaptation conditions. A previously developed adaptive control law for an overhead crane is described. An experimental model of an overhead crane is described. An algorithm for adaptive control of an overhead crane model has been developed. The first experimental studies of the proposed control method have been carried out. They confirm its performance in real conditions. The results of experimental tests have shown the effectiveness of the adaptive control law. The system ensures fine motion of the load in a short period of time, dampens the pendular oscillations of the load during acceleration and deceleration of the trolley, as well as during external disturbances. The adaptive control law allows you to move the load to the designated position and dampen the pendular oscillations with minimal preset adjustment of the control system. Since the identification of parameters occurs at the current time, the changes of the parameters of the load and the length of suspension do not affect the quality of control.\",\"PeriodicalId\":23635,\"journal\":{\"name\":\"Vestnik IGEU\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik IGEU\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17588/2072-2672.2022.2.047-057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik IGEU","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17588/2072-2672.2022.2.047-057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of adaptive control law of overhead crane using its model
Nowadays, cargo cranes are widely used in various areas of industries. Many of cranes use suspended load fastening, which is associated with load swinging during transportation. Load swinging is most often caused by acceleration or deceleration of the crane trolley, less often it occurs due to external disturbances, such as wind. One of the key directions of the development of this kind of cranes is the development of an automated control system that can dampen pendular oscillations of the load. At present, a considerable number of control systems have been developed, but most of them require preset adjustment of specific parameters of the transported load. The task of this study is to develop and debug a control algorithm using a model of an overhead crane of previously developed adaptive control law that can provide fine positioning and damping of load oscillations under the current parametric uncertainty. The study using the pilot plant will allow us to determine and analyze the features of the implementation of the control law before its application for industrial cranes. An adaptive control law is studied using the model of overhead crane under conditions of a current parametric uncertainty of the load and external disturbances. This control method is based on an adaptive control approach with an identifier and an implicit reference model using “simplified” adaptation conditions. A previously developed adaptive control law for an overhead crane is described. An experimental model of an overhead crane is described. An algorithm for adaptive control of an overhead crane model has been developed. The first experimental studies of the proposed control method have been carried out. They confirm its performance in real conditions. The results of experimental tests have shown the effectiveness of the adaptive control law. The system ensures fine motion of the load in a short period of time, dampens the pendular oscillations of the load during acceleration and deceleration of the trolley, as well as during external disturbances. The adaptive control law allows you to move the load to the designated position and dampen the pendular oscillations with minimal preset adjustment of the control system. Since the identification of parameters occurs at the current time, the changes of the parameters of the load and the length of suspension do not affect the quality of control.