具有临界反应和变增长的Choquard方程的高低摄动

Youpei Zhang, Xianhua Tang, V. Rǎdulescu
{"title":"具有临界反应和变增长的Choquard方程的高低摄动","authors":"Youpei Zhang, Xianhua Tang, V. Rǎdulescu","doi":"10.3934/dcds.2021180","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ - \\Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ = \\left( \\int_{\\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\\lambda(x,y)} dy\\right) |u|^{r(x)-2} u+g(x,u)\\ \\mbox{in}\\ \\mathbb R^N, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the exponent <inline-formula><tex-math id=\"M1\">\\begin{document}$ r(\\cdot) $\\end{document}</tex-math></inline-formula> is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation <inline-formula><tex-math id=\"M2\">\\begin{document}$ g(\\cdot ,\\cdot) $\\end{document}</tex-math></inline-formula> is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity <inline-formula><tex-math id=\"M3\">\\begin{document}$ g(\\cdot ,\\cdot) $\\end{document}</tex-math></inline-formula> is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High and low perturbations of Choquard equations with critical reaction and variable growth\",\"authors\":\"Youpei Zhang, Xianhua Tang, V. Rǎdulescu\",\"doi\":\"10.3934/dcds.2021180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ - \\\\Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ = \\\\left( \\\\int_{\\\\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\\\\lambda(x,y)} dy\\\\right) |u|^{r(x)-2} u+g(x,u)\\\\ \\\\mbox{in}\\\\ \\\\mathbb R^N, $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the exponent <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ r(\\\\cdot) $\\\\end{document}</tex-math></inline-formula> is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ g(\\\\cdot ,\\\\cdot) $\\\\end{document}</tex-math></inline-formula> is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ g(\\\\cdot ,\\\\cdot) $\\\\end{document}</tex-math></inline-formula> is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation \begin{document}$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\end{document} \begin{document}$ = \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u)\ \mbox{in}\ \mathbb R^N, $\end{document} where the exponent \begin{document}$ r(\cdot) $\end{document} is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \begin{document}$ g(\cdot ,\cdot) $\end{document} is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \begin{document}$ g(\cdot ,\cdot) $\end{document} is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High and low perturbations of Choquard equations with critical reaction and variable growth

We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation

where the exponent \begin{document}$ r(\cdot) $\end{document} is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \begin{document}$ g(\cdot ,\cdot) $\end{document} is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \begin{document}$ g(\cdot ,\cdot) $\end{document} is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信