{"title":"数据驱动的CHC求解器","authors":"He Zhu, Stephen Magill, S. Jagannathan","doi":"10.1145/3192366.3192416","DOIUrl":null,"url":null,"abstract":"We present a data-driven technique to solve Constrained Horn Clauses (CHCs) that encode verification conditions of programs containing unconstrained loops and recursions. Our CHC solver neither constrains the search space from which a predicate's components are inferred (e.g., by constraining the number of variables or the values of coefficients used to specify an invariant), nor fixes the shape of the predicate itself (e.g., by bounding the number and kind of logical connectives). Instead, our approach is based on a novel machine learning-inspired tool chain that synthesizes CHC solutions in terms of arbitrary Boolean combinations of unrestricted atomic predicates. A CEGAR-based verification loop inside the solver progressively samples representative positive and negative data from recursive CHCs, which is fed to the machine learning tool chain. Our solver is implemented as an LLVM pass in the SeaHorn verification framework and has been used to successfully verify a large number of nontrivial and challenging C programs from the literature and well-known benchmark suites (e.g., SV-COMP).","PeriodicalId":20583,"journal":{"name":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A data-driven CHC solver\",\"authors\":\"He Zhu, Stephen Magill, S. Jagannathan\",\"doi\":\"10.1145/3192366.3192416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a data-driven technique to solve Constrained Horn Clauses (CHCs) that encode verification conditions of programs containing unconstrained loops and recursions. Our CHC solver neither constrains the search space from which a predicate's components are inferred (e.g., by constraining the number of variables or the values of coefficients used to specify an invariant), nor fixes the shape of the predicate itself (e.g., by bounding the number and kind of logical connectives). Instead, our approach is based on a novel machine learning-inspired tool chain that synthesizes CHC solutions in terms of arbitrary Boolean combinations of unrestricted atomic predicates. A CEGAR-based verification loop inside the solver progressively samples representative positive and negative data from recursive CHCs, which is fed to the machine learning tool chain. Our solver is implemented as an LLVM pass in the SeaHorn verification framework and has been used to successfully verify a large number of nontrivial and challenging C programs from the literature and well-known benchmark suites (e.g., SV-COMP).\",\"PeriodicalId\":20583,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3192366.3192416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3192366.3192416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a data-driven technique to solve Constrained Horn Clauses (CHCs) that encode verification conditions of programs containing unconstrained loops and recursions. Our CHC solver neither constrains the search space from which a predicate's components are inferred (e.g., by constraining the number of variables or the values of coefficients used to specify an invariant), nor fixes the shape of the predicate itself (e.g., by bounding the number and kind of logical connectives). Instead, our approach is based on a novel machine learning-inspired tool chain that synthesizes CHC solutions in terms of arbitrary Boolean combinations of unrestricted atomic predicates. A CEGAR-based verification loop inside the solver progressively samples representative positive and negative data from recursive CHCs, which is fed to the machine learning tool chain. Our solver is implemented as an LLVM pass in the SeaHorn verification framework and has been used to successfully verify a large number of nontrivial and challenging C programs from the literature and well-known benchmark suites (e.g., SV-COMP).