若干可交换环图上的迂回卵石数

IF 0.2 Q4 MATHEMATICS
A. Lourdusamy, S. K. Iammal, I. Dhivviyanandam
{"title":"若干可交换环图上的迂回卵石数","authors":"A. Lourdusamy, S. K. Iammal, I. Dhivviyanandam","doi":"10.26713/cma.v14i1.2018","DOIUrl":null,"url":null,"abstract":". The detour pebbling number of a graph G is the least positive integer f ∗ ( G ) such that these pebbles are placed on the vertices of G , we can move a pebble to a target vertex by a sequence of pebbling moves each move taking two pebbles off a vertex and placing one of the pebbles on an adjacent vertex using detour path. In this paper, we compute the detour pebbling number for the commutative ring of zero-divisor graphs, sum and the product of zero divisor graphs.","PeriodicalId":43490,"journal":{"name":"Communications in Mathematics and Applications","volume":"120 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detour Pebbling Number on Some Commutative Ring Graphs\",\"authors\":\"A. Lourdusamy, S. K. Iammal, I. Dhivviyanandam\",\"doi\":\"10.26713/cma.v14i1.2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The detour pebbling number of a graph G is the least positive integer f ∗ ( G ) such that these pebbles are placed on the vertices of G , we can move a pebble to a target vertex by a sequence of pebbling moves each move taking two pebbles off a vertex and placing one of the pebbles on an adjacent vertex using detour path. In this paper, we compute the detour pebbling number for the commutative ring of zero-divisor graphs, sum and the product of zero divisor graphs.\",\"PeriodicalId\":43490,\"journal\":{\"name\":\"Communications in Mathematics and Applications\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26713/cma.v14i1.2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26713/cma.v14i1.2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。图G的绕道铺石数是最小正整数f * (G),使得这些鹅卵石被放置在G的顶点上,我们可以通过一系列的铺石移动将鹅卵石移动到目标顶点,每次移动从一个顶点上取下两个鹅卵石,并使用绕道路径将其中一个鹅卵石放置在相邻的顶点上。本文计算了零因子图交换环的绕行数,以及零因子图的和与积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detour Pebbling Number on Some Commutative Ring Graphs
. The detour pebbling number of a graph G is the least positive integer f ∗ ( G ) such that these pebbles are placed on the vertices of G , we can move a pebble to a target vertex by a sequence of pebbling moves each move taking two pebbles off a vertex and placing one of the pebbles on an adjacent vertex using detour path. In this paper, we compute the detour pebbling number for the commutative ring of zero-divisor graphs, sum and the product of zero divisor graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
53
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信