{"title":"微型斯特林制冷机蓄热器的流体力学和传热特性研究进展","authors":"V. V. K. Kumar","doi":"10.1142/s2010132521300068","DOIUrl":null,"url":null,"abstract":"Miniature Stirling coolers are preferred to provide cryogenic cooling for infra-red (IR) sensors used for communication, military, and space applications. They provide 0.25–1.5[Formula: see text]W of cooling effect at 60–80[Formula: see text]K. Miniature Stirling coolers used for space applications are time tested, reliable, and have the maximum COP compared to other types of coolers. Helium is used as the working fluid because of its low boiling point, high thermal conductivity, high ratio of specific heat, and inert gas properties. A regenerator is the primary heat exchanger in the system, which periodically exchanges heat with the cold and hot gases passing through the regenerator material. The effectiveness of the regenerator is the most important parameter influencing the cooling effect produced by the system. For the optimum performance of the cryocooler, the regenerator should have maximum heat transfer area, minimum void volume, minimum pressure drop, large heat capacity ratio between the matrix material and gas, and minimum longitudinal conduction. Since some of these requirements are conflicting in nature, the design of the regenerator becomes a challenge in the overall design of the cooler. A state-of-the-art review of regenerator materials, designs, and operation is presented in this study. The different sources of regenerator losses and the issues related to regenerator design and optimization are discussed in detail. Results of various experimental and numerical investigations conducted on a Stirling regenerator are discussed and the recent developments in material selection and design are highlighted.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"104 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic and Heat Transfer Characteristics of Miniature Stirling Cryocooler Regenerators — A Review\",\"authors\":\"V. V. K. Kumar\",\"doi\":\"10.1142/s2010132521300068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniature Stirling coolers are preferred to provide cryogenic cooling for infra-red (IR) sensors used for communication, military, and space applications. They provide 0.25–1.5[Formula: see text]W of cooling effect at 60–80[Formula: see text]K. Miniature Stirling coolers used for space applications are time tested, reliable, and have the maximum COP compared to other types of coolers. Helium is used as the working fluid because of its low boiling point, high thermal conductivity, high ratio of specific heat, and inert gas properties. A regenerator is the primary heat exchanger in the system, which periodically exchanges heat with the cold and hot gases passing through the regenerator material. The effectiveness of the regenerator is the most important parameter influencing the cooling effect produced by the system. For the optimum performance of the cryocooler, the regenerator should have maximum heat transfer area, minimum void volume, minimum pressure drop, large heat capacity ratio between the matrix material and gas, and minimum longitudinal conduction. Since some of these requirements are conflicting in nature, the design of the regenerator becomes a challenge in the overall design of the cooler. A state-of-the-art review of regenerator materials, designs, and operation is presented in this study. The different sources of regenerator losses and the issues related to regenerator design and optimization are discussed in detail. Results of various experimental and numerical investigations conducted on a Stirling regenerator are discussed and the recent developments in material selection and design are highlighted.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010132521300068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521300068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Hydrodynamic and Heat Transfer Characteristics of Miniature Stirling Cryocooler Regenerators — A Review
Miniature Stirling coolers are preferred to provide cryogenic cooling for infra-red (IR) sensors used for communication, military, and space applications. They provide 0.25–1.5[Formula: see text]W of cooling effect at 60–80[Formula: see text]K. Miniature Stirling coolers used for space applications are time tested, reliable, and have the maximum COP compared to other types of coolers. Helium is used as the working fluid because of its low boiling point, high thermal conductivity, high ratio of specific heat, and inert gas properties. A regenerator is the primary heat exchanger in the system, which periodically exchanges heat with the cold and hot gases passing through the regenerator material. The effectiveness of the regenerator is the most important parameter influencing the cooling effect produced by the system. For the optimum performance of the cryocooler, the regenerator should have maximum heat transfer area, minimum void volume, minimum pressure drop, large heat capacity ratio between the matrix material and gas, and minimum longitudinal conduction. Since some of these requirements are conflicting in nature, the design of the regenerator becomes a challenge in the overall design of the cooler. A state-of-the-art review of regenerator materials, designs, and operation is presented in this study. The different sources of regenerator losses and the issues related to regenerator design and optimization are discussed in detail. Results of various experimental and numerical investigations conducted on a Stirling regenerator are discussed and the recent developments in material selection and design are highlighted.
期刊介绍:
As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.