用于高频变压器设计的新型柔性纳米晶片状带

Xinru Li, C. Jiang, Hui Zhao, Boya Wen, Yunlei Jiang, T. Long
{"title":"用于高频变压器设计的新型柔性纳米晶片状带","authors":"Xinru Li, C. Jiang, Hui Zhao, Boya Wen, Yunlei Jiang, T. Long","doi":"10.1109/APEC42165.2021.9487151","DOIUrl":null,"url":null,"abstract":"The eddy current loss for nanocrystalline alloys is detrimental at high frequencies due to the low material resistivity. Novel flexible nanocrystalline flake ribbons fabricated from Fe-based nanocrystalline alloys are introduced to solve the problem. In this paper, the manufacturing process of a novel material and the mechanism of reducing eddy current loss are described. The material characterisation and magnetic measurement of nanocrystalline flake ribbons are given. The core losses of nanocrystalline flake ribbons and conventional nanocrystalline ribbons are compared. The experimental results show that the core losses of nanocrystalline flake ribbons decrease by 30% compared to the corresponding nanocrystalline ribbons. Following an optimal design procedure, high frequency (HF) transformers built by the flake ribbons and ferrites are tested in a 1.2 kW DAB converter, and the core losses are reduced by over 50% compared with ferrite transformers.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"141 1","pages":"2891-2896"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Novel Flexible Nanocrystalline Flake Ribbons for High-Frequency Transformer Design\",\"authors\":\"Xinru Li, C. Jiang, Hui Zhao, Boya Wen, Yunlei Jiang, T. Long\",\"doi\":\"10.1109/APEC42165.2021.9487151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eddy current loss for nanocrystalline alloys is detrimental at high frequencies due to the low material resistivity. Novel flexible nanocrystalline flake ribbons fabricated from Fe-based nanocrystalline alloys are introduced to solve the problem. In this paper, the manufacturing process of a novel material and the mechanism of reducing eddy current loss are described. The material characterisation and magnetic measurement of nanocrystalline flake ribbons are given. The core losses of nanocrystalline flake ribbons and conventional nanocrystalline ribbons are compared. The experimental results show that the core losses of nanocrystalline flake ribbons decrease by 30% compared to the corresponding nanocrystalline ribbons. Following an optimal design procedure, high frequency (HF) transformers built by the flake ribbons and ferrites are tested in a 1.2 kW DAB converter, and the core losses are reduced by over 50% compared with ferrite transformers.\",\"PeriodicalId\":7050,\"journal\":{\"name\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"141 1\",\"pages\":\"2891-2896\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC42165.2021.9487151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于材料电阻率低,纳米晶合金在高频时的涡流损耗是有害的。采用铁基纳米晶合金制备的柔性纳米晶片带解决了这一问题。本文介绍了一种新型材料的制备工艺及其降低涡流损耗的机理。给出了纳米晶片状带的材料表征和磁性测量方法。比较了纳米晶片状带和普通纳米晶带的芯损。实验结果表明,纳米晶片状带的磁芯损耗比相应的纳米晶带降低了30%。根据优化设计程序,在1.2 kW DAB变换器上测试了由片状带和铁氧体制成的高频变压器,与铁氧体变压器相比,铁芯损耗降低了50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Flexible Nanocrystalline Flake Ribbons for High-Frequency Transformer Design
The eddy current loss for nanocrystalline alloys is detrimental at high frequencies due to the low material resistivity. Novel flexible nanocrystalline flake ribbons fabricated from Fe-based nanocrystalline alloys are introduced to solve the problem. In this paper, the manufacturing process of a novel material and the mechanism of reducing eddy current loss are described. The material characterisation and magnetic measurement of nanocrystalline flake ribbons are given. The core losses of nanocrystalline flake ribbons and conventional nanocrystalline ribbons are compared. The experimental results show that the core losses of nanocrystalline flake ribbons decrease by 30% compared to the corresponding nanocrystalline ribbons. Following an optimal design procedure, high frequency (HF) transformers built by the flake ribbons and ferrites are tested in a 1.2 kW DAB converter, and the core losses are reduced by over 50% compared with ferrite transformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信