第一阶段分析存在异常值的高维过程

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL
M. Ebadi, Shoja'eddin Chenouri, Stefan H. Steiner
{"title":"第一阶段分析存在异常值的高维过程","authors":"M. Ebadi, Shoja'eddin Chenouri, Stefan H. Steiner","doi":"10.1080/00224065.2023.2196034","DOIUrl":null,"url":null,"abstract":"Abstract One of the significant challenges in monitoring the quality of products today is the high dimensionality of quality characteristics. In this paper, we address Phase I analysis of high-dimensional processes with individual observations when the available number of samples collected over time is limited. Using a new charting statistic, we propose a robust procedure for parameter estimation in Phase I. This robust procedure is efficient in parameter estimation in the presence of outliers or contamination in the data. A consistent estimator is proposed for parameter estimation and a finite sample correction coefficient is derived and evaluated through simulation. We assess the statistical performance of the proposed method in Phase I. This assessment is carried out in the absence and presence of outliers. We show that, in both cases, the proposed control chart scheme effectively detects various kinds of shifts in the process mean. Besides, we present two real-world examples to illustrate the applicability of our proposed method.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phase I analysis of high-dimensional processes in the presence of outliers\",\"authors\":\"M. Ebadi, Shoja'eddin Chenouri, Stefan H. Steiner\",\"doi\":\"10.1080/00224065.2023.2196034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the significant challenges in monitoring the quality of products today is the high dimensionality of quality characteristics. In this paper, we address Phase I analysis of high-dimensional processes with individual observations when the available number of samples collected over time is limited. Using a new charting statistic, we propose a robust procedure for parameter estimation in Phase I. This robust procedure is efficient in parameter estimation in the presence of outliers or contamination in the data. A consistent estimator is proposed for parameter estimation and a finite sample correction coefficient is derived and evaluated through simulation. We assess the statistical performance of the proposed method in Phase I. This assessment is carried out in the absence and presence of outliers. We show that, in both cases, the proposed control chart scheme effectively detects various kinds of shifts in the process mean. Besides, we present two real-world examples to illustrate the applicability of our proposed method.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2023.2196034\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2023.2196034","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要当今产品质量监控面临的重大挑战之一是质量特征的高维性。在本文中,我们解决了第一阶段的高维过程的分析与个人的观察,当可用的样本数量随着时间的推移是有限的。使用新的图表统计量,我们提出了一种鲁棒的阶段参数估计程序。这种鲁棒程序在数据中存在异常值或污染的情况下,参数估计是有效的。提出了参数估计的一致估计量,推导了有限样本校正系数,并通过仿真对其进行了评估。我们在第一阶段评估了所提出方法的统计性能。该评估是在没有和存在异常值的情况下进行的。我们证明,在这两种情况下,所提出的控制图方案都能有效地检测到过程均值的各种移位。此外,我们提出了两个现实世界的例子来说明我们所提出的方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase I analysis of high-dimensional processes in the presence of outliers
Abstract One of the significant challenges in monitoring the quality of products today is the high dimensionality of quality characteristics. In this paper, we address Phase I analysis of high-dimensional processes with individual observations when the available number of samples collected over time is limited. Using a new charting statistic, we propose a robust procedure for parameter estimation in Phase I. This robust procedure is efficient in parameter estimation in the presence of outliers or contamination in the data. A consistent estimator is proposed for parameter estimation and a finite sample correction coefficient is derived and evaluated through simulation. We assess the statistical performance of the proposed method in Phase I. This assessment is carried out in the absence and presence of outliers. We show that, in both cases, the proposed control chart scheme effectively detects various kinds of shifts in the process mean. Besides, we present two real-world examples to illustrate the applicability of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信