几乎校准(1,1)-的空间形式在一个紧凑的Kähler流形上

IF 2 1区 数学
Jianchun Chu, Tristan C. Collins, Man-Chun Lee
{"title":"几乎校准(1,1)-的空间形式在一个紧凑的Kähler流形上","authors":"Jianchun Chu, Tristan C. Collins, Man-Chun Lee","doi":"10.2140/gt.2021.25.2573","DOIUrl":null,"url":null,"abstract":"The space $\\mathcal{H}$ of \"almost calibrated\" $(1,1)$ forms on a compact Kahler manifold plays an important role in the study of the deformed Hermitian-Yang-Mills equation of mirror symmetry as emphasized by recent work of the second author and Yau, and is related by mirror symmetry to the space of positive Lagrangians studied by Solomon. This paper initiates the study of the geometry of $\\mathcal{H}$. We show that $\\mathcal{H}$ is an infinite dimensional Riemannian manifold with non-positive sectional curvature. In the hypercritical phase case we show that $\\mathcal{H}$ has a well-defined metric structure, and that its completion is a ${\\rm CAT}(0)$ geodesic metric space, and hence has an intrinsically defined ideal boundary. Finally, we show that in the hypercritical phase case $\\mathcal{H}$ admits $C^{1,1}$ geodesics, improving a result of the second author and Yau. Using results of Darvas-Lempert we show that this result is sharp.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"110 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The space of almost calibrated (1,1)–forms on a\\ncompact Kähler manifold\",\"authors\":\"Jianchun Chu, Tristan C. Collins, Man-Chun Lee\",\"doi\":\"10.2140/gt.2021.25.2573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The space $\\\\mathcal{H}$ of \\\"almost calibrated\\\" $(1,1)$ forms on a compact Kahler manifold plays an important role in the study of the deformed Hermitian-Yang-Mills equation of mirror symmetry as emphasized by recent work of the second author and Yau, and is related by mirror symmetry to the space of positive Lagrangians studied by Solomon. This paper initiates the study of the geometry of $\\\\mathcal{H}$. We show that $\\\\mathcal{H}$ is an infinite dimensional Riemannian manifold with non-positive sectional curvature. In the hypercritical phase case we show that $\\\\mathcal{H}$ has a well-defined metric structure, and that its completion is a ${\\\\rm CAT}(0)$ geodesic metric space, and hence has an intrinsically defined ideal boundary. Finally, we show that in the hypercritical phase case $\\\\mathcal{H}$ admits $C^{1,1}$ geodesics, improving a result of the second author and Yau. Using results of Darvas-Lempert we show that this result is sharp.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2573\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2573","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

紧化Kahler流形上的“几乎校准”$(1,1)$形式的$\数学{H}$在第二作者和Yau最近的工作中强调的镜面对称变形Hermitian-Yang-Mills方程的研究中起着重要作用,并且通过镜面对称与Solomon研究的正拉格朗日空间相联系。本文研究了$\mathcal{H}$的几何性质。我们证明$\mathcal{H}$是一个非正截面曲率的无限维黎曼流形。在临界相情况下,我们证明了$\mathcal{H}$具有一个定义良好的度量结构,并且它的补全是${\rm CAT}(0)$测地度量空间,因此具有一个内在定义的理想边界。最后,我们证明了在超临界相情况下$\mathcal{H}$允许$C^{1,1}$测地线,改进了第二作者和Yau的结果。利用Darvas-Lempert的结果,我们证明了这个结果是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The space of almost calibrated (1,1)–forms on a compact Kähler manifold
The space $\mathcal{H}$ of "almost calibrated" $(1,1)$ forms on a compact Kahler manifold plays an important role in the study of the deformed Hermitian-Yang-Mills equation of mirror symmetry as emphasized by recent work of the second author and Yau, and is related by mirror symmetry to the space of positive Lagrangians studied by Solomon. This paper initiates the study of the geometry of $\mathcal{H}$. We show that $\mathcal{H}$ is an infinite dimensional Riemannian manifold with non-positive sectional curvature. In the hypercritical phase case we show that $\mathcal{H}$ has a well-defined metric structure, and that its completion is a ${\rm CAT}(0)$ geodesic metric space, and hence has an intrinsically defined ideal boundary. Finally, we show that in the hypercritical phase case $\mathcal{H}$ admits $C^{1,1}$ geodesics, improving a result of the second author and Yau. Using results of Darvas-Lempert we show that this result is sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信