基于神经网络的燃料电池汽车实时最优预测功率管理策略

Ahmed M. Ali, M. Yacoub
{"title":"基于神经网络的燃料电池汽车实时最优预测功率管理策略","authors":"Ahmed M. Ali, M. Yacoub","doi":"10.1109/VPPC49601.2020.9330931","DOIUrl":null,"url":null,"abstract":"Optimal predictive power management strategies (PMSs) for hybrid electric vehicles have a significant potentiality to achieve near-optimal solutions in real-time. Providing a priori prediction for power demand and implementing simplified, yet accurate, driveline models, to yield an optimal control strategy online are key challenges for predictive power management algorithms. Finding suitable solutions to resolve these challenges contributes to the ability of real-time PMSs to define efficient power handling strategies and hence promote better energy efficiency in electrified powertrains. This paper presents a neural networks-based predictive PMSs for fuel cell vehicles. The proposed method implements two types of networks, time-delay and nonlinear autoregressive network with exogenous inputs, to generate the required predictive models for the PMS. The online control module investigates an optimal power split strategy over the predicted horizon, considering minimal energy consumption and on-board charge retention. For comparative evaluation, rule-based method and the global optimal solution for a test driving cycle are considered. Results analysis revealed the ability of proposed method to yield an improvement of 20.71 % in energy efficiency without mitigating the state-of-charge on energy storage systems.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"110 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal predictive power management strategy for fuel cell electric vehicles using neural networks in real-time\",\"authors\":\"Ahmed M. Ali, M. Yacoub\",\"doi\":\"10.1109/VPPC49601.2020.9330931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal predictive power management strategies (PMSs) for hybrid electric vehicles have a significant potentiality to achieve near-optimal solutions in real-time. Providing a priori prediction for power demand and implementing simplified, yet accurate, driveline models, to yield an optimal control strategy online are key challenges for predictive power management algorithms. Finding suitable solutions to resolve these challenges contributes to the ability of real-time PMSs to define efficient power handling strategies and hence promote better energy efficiency in electrified powertrains. This paper presents a neural networks-based predictive PMSs for fuel cell vehicles. The proposed method implements two types of networks, time-delay and nonlinear autoregressive network with exogenous inputs, to generate the required predictive models for the PMS. The online control module investigates an optimal power split strategy over the predicted horizon, considering minimal energy consumption and on-board charge retention. For comparative evaluation, rule-based method and the global optimal solution for a test driving cycle are considered. Results analysis revealed the ability of proposed method to yield an improvement of 20.71 % in energy efficiency without mitigating the state-of-charge on energy storage systems.\",\"PeriodicalId\":6851,\"journal\":{\"name\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"110 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC49601.2020.9330931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

混合动力汽车的最优预测功率管理策略(pms)具有实现实时近最优解决方案的巨大潜力。为电力需求提供先验预测,并实现简化而准确的传动系统模型,以在线产生最优控制策略,是预测电力管理算法的关键挑战。寻找合适的解决方案来解决这些挑战,有助于实时pms定义有效的功率处理策略,从而提高电气化动力系统的能源效率。提出了一种基于神经网络的燃料电池汽车pms预测方法。该方法实现了两种类型的网络,时滞网络和外生输入的非线性自回归网络,以生成所需的PMS预测模型。在线控制模块在考虑最小能量消耗和机载电荷保留的情况下,在预测范围内研究最优功率分配策略。为了进行比较评价,考虑了基于规则的方法和测试驾驶循环的全局最优解。结果分析表明,所提出的方法能够在不减轻储能系统充电状态的情况下提高20.71%的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal predictive power management strategy for fuel cell electric vehicles using neural networks in real-time
Optimal predictive power management strategies (PMSs) for hybrid electric vehicles have a significant potentiality to achieve near-optimal solutions in real-time. Providing a priori prediction for power demand and implementing simplified, yet accurate, driveline models, to yield an optimal control strategy online are key challenges for predictive power management algorithms. Finding suitable solutions to resolve these challenges contributes to the ability of real-time PMSs to define efficient power handling strategies and hence promote better energy efficiency in electrified powertrains. This paper presents a neural networks-based predictive PMSs for fuel cell vehicles. The proposed method implements two types of networks, time-delay and nonlinear autoregressive network with exogenous inputs, to generate the required predictive models for the PMS. The online control module investigates an optimal power split strategy over the predicted horizon, considering minimal energy consumption and on-board charge retention. For comparative evaluation, rule-based method and the global optimal solution for a test driving cycle are considered. Results analysis revealed the ability of proposed method to yield an improvement of 20.71 % in energy efficiency without mitigating the state-of-charge on energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信