Bo Wang, Ting Gong, Ran Li, Qi Wang, Jie Yang, Wei Liu, Zouzhuan Yang, Pan Zhang, Guofu Hu
{"title":"羊草种子转录组中PGM和SUS基因家族的鉴定与分析","authors":"Bo Wang, Ting Gong, Ran Li, Qi Wang, Jie Yang, Wei Liu, Zouzhuan Yang, Pan Zhang, Guofu Hu","doi":"10.5376/MPB.2021.12.0007","DOIUrl":null,"url":null,"abstract":"Leymus chinensis ( Leymus chinensis (Trin.) Tzvel.) is a good perennial forage with good palatability, high yield and high feeding value. In addition, because of its strong resistance, Leymus chinensis can improve the disadvantaged environment such as poor land, and it is an important species to protect grassland ecology in China. Therefore, in order to promote the germination of leymus chinensis seeds and explore the mechanism of Germination, this study used sterile water treatment of leymus chinensis seeds as control, exogenous GA3 as treatment conditions. Based on the analysis of pre-transcriptome data, it was determined that PGM and SUS genes in sucrose and starch metabolic pathways play a significant role in seed Germination. Members identification, conserved domains, and evolutionary trees were analyzed for both gene families using the bioinformatics method. The expression pattern of PGM and SUS genes were analyzed with FPKM value. The results showed that 7 members were selected from each of the the PGM and SUS families based on the data of Leymus Chinensis seeds transcriptome. The molecular weight of PGM genes ranged from 15 471.3 to 67 912.9 Da, and the isoelectric point value ranged from 4.45 to 6.31, showing weak acidity. PGM family in Leymus Chinensis seeds are hydrophilic stable proteins. The molecular weight of SUS genes ranged from 30 421.5 to 110 262.9 Da. The isoelectric point of SUS genes was neutral except LcSUS1,5 and 7 , while the other four genes were weak acidic. LcSUS4 , 6 were stable hydrophilic proteins, the rest were unstable hydrophilic proteins. The PGM and SUS gene families in Leymus chinensis seeds play an enzyme role in promoting sucrose and starch synthesis in sucrose and starch metabolism pathways. The expression pattern analysis of Leymus chinensis seeds showed that the genes of PGM and SUS gene families in GA3-treated Leymus chinensis seeds promoted the germination of Leymus chinensis seeds by regulating the sucrose and starch pathways with different expression levels. genes is found to be between 4.45~6.31 through the analysis of the isoelectric point, and the average value is about 5.67, indicating that it mainly plays a role in the environment of weak acid cells. The prediction of the instability coefficient showed that the values were all less than 40, so it could be presumed to be a stable protein. The average hydrophilic coefficients were all less than 0, indicating that the proteins of these seven genes were hydrophilic proteins. The results showed that the seven LcPGM proteins were different in predicting the length of amino acid sequence and the physicochemical properties of the proteins, suggesting that LcPGM proteins had different biological properties.","PeriodicalId":32255,"journal":{"name":"Journal of Plant Molecular Breeding","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification and Analysis of PGM and SUS Gene Families in Leymus Chinensis Seed Transcriptome\",\"authors\":\"Bo Wang, Ting Gong, Ran Li, Qi Wang, Jie Yang, Wei Liu, Zouzhuan Yang, Pan Zhang, Guofu Hu\",\"doi\":\"10.5376/MPB.2021.12.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leymus chinensis ( Leymus chinensis (Trin.) Tzvel.) is a good perennial forage with good palatability, high yield and high feeding value. In addition, because of its strong resistance, Leymus chinensis can improve the disadvantaged environment such as poor land, and it is an important species to protect grassland ecology in China. Therefore, in order to promote the germination of leymus chinensis seeds and explore the mechanism of Germination, this study used sterile water treatment of leymus chinensis seeds as control, exogenous GA3 as treatment conditions. Based on the analysis of pre-transcriptome data, it was determined that PGM and SUS genes in sucrose and starch metabolic pathways play a significant role in seed Germination. Members identification, conserved domains, and evolutionary trees were analyzed for both gene families using the bioinformatics method. The expression pattern of PGM and SUS genes were analyzed with FPKM value. The results showed that 7 members were selected from each of the the PGM and SUS families based on the data of Leymus Chinensis seeds transcriptome. The molecular weight of PGM genes ranged from 15 471.3 to 67 912.9 Da, and the isoelectric point value ranged from 4.45 to 6.31, showing weak acidity. PGM family in Leymus Chinensis seeds are hydrophilic stable proteins. The molecular weight of SUS genes ranged from 30 421.5 to 110 262.9 Da. The isoelectric point of SUS genes was neutral except LcSUS1,5 and 7 , while the other four genes were weak acidic. LcSUS4 , 6 were stable hydrophilic proteins, the rest were unstable hydrophilic proteins. The PGM and SUS gene families in Leymus chinensis seeds play an enzyme role in promoting sucrose and starch synthesis in sucrose and starch metabolism pathways. The expression pattern analysis of Leymus chinensis seeds showed that the genes of PGM and SUS gene families in GA3-treated Leymus chinensis seeds promoted the germination of Leymus chinensis seeds by regulating the sucrose and starch pathways with different expression levels. genes is found to be between 4.45~6.31 through the analysis of the isoelectric point, and the average value is about 5.67, indicating that it mainly plays a role in the environment of weak acid cells. The prediction of the instability coefficient showed that the values were all less than 40, so it could be presumed to be a stable protein. The average hydrophilic coefficients were all less than 0, indicating that the proteins of these seven genes were hydrophilic proteins. The results showed that the seven LcPGM proteins were different in predicting the length of amino acid sequence and the physicochemical properties of the proteins, suggesting that LcPGM proteins had different biological properties.\",\"PeriodicalId\":32255,\"journal\":{\"name\":\"Journal of Plant Molecular Breeding\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Molecular Breeding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5376/MPB.2021.12.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Molecular Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5376/MPB.2021.12.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification and Analysis of PGM and SUS Gene Families in Leymus Chinensis Seed Transcriptome
Leymus chinensis ( Leymus chinensis (Trin.) Tzvel.) is a good perennial forage with good palatability, high yield and high feeding value. In addition, because of its strong resistance, Leymus chinensis can improve the disadvantaged environment such as poor land, and it is an important species to protect grassland ecology in China. Therefore, in order to promote the germination of leymus chinensis seeds and explore the mechanism of Germination, this study used sterile water treatment of leymus chinensis seeds as control, exogenous GA3 as treatment conditions. Based on the analysis of pre-transcriptome data, it was determined that PGM and SUS genes in sucrose and starch metabolic pathways play a significant role in seed Germination. Members identification, conserved domains, and evolutionary trees were analyzed for both gene families using the bioinformatics method. The expression pattern of PGM and SUS genes were analyzed with FPKM value. The results showed that 7 members were selected from each of the the PGM and SUS families based on the data of Leymus Chinensis seeds transcriptome. The molecular weight of PGM genes ranged from 15 471.3 to 67 912.9 Da, and the isoelectric point value ranged from 4.45 to 6.31, showing weak acidity. PGM family in Leymus Chinensis seeds are hydrophilic stable proteins. The molecular weight of SUS genes ranged from 30 421.5 to 110 262.9 Da. The isoelectric point of SUS genes was neutral except LcSUS1,5 and 7 , while the other four genes were weak acidic. LcSUS4 , 6 were stable hydrophilic proteins, the rest were unstable hydrophilic proteins. The PGM and SUS gene families in Leymus chinensis seeds play an enzyme role in promoting sucrose and starch synthesis in sucrose and starch metabolism pathways. The expression pattern analysis of Leymus chinensis seeds showed that the genes of PGM and SUS gene families in GA3-treated Leymus chinensis seeds promoted the germination of Leymus chinensis seeds by regulating the sucrose and starch pathways with different expression levels. genes is found to be between 4.45~6.31 through the analysis of the isoelectric point, and the average value is about 5.67, indicating that it mainly plays a role in the environment of weak acid cells. The prediction of the instability coefficient showed that the values were all less than 40, so it could be presumed to be a stable protein. The average hydrophilic coefficients were all less than 0, indicating that the proteins of these seven genes were hydrophilic proteins. The results showed that the seven LcPGM proteins were different in predicting the length of amino acid sequence and the physicochemical properties of the proteins, suggesting that LcPGM proteins had different biological properties.