对角线和Bertino copula的极端行为

Pub Date : 2021-01-25 DOI:10.5802/CRMATH.135
Christian Genest, M. Sabbagh
{"title":"对角线和Bertino copula的极端行为","authors":"Christian Genest, M. Sabbagh","doi":"10.5802/CRMATH.135","DOIUrl":null,"url":null,"abstract":"The maximal attractors of bivariate diagonal and Bertino copulas are determined under suitable regularity conditions. Some consequences of these facts are drawn, namely bounds on the maximal attractor of a symmetric copula with a given diagonal section, and bounds on Spearman’s rho and Kendall’s tau for an exchangeable extreme-value copula whose upper-tail dependence coefficient is known. Some of these results are then extended to the case of arbitrary bivariate copulas and to multivariate copulas. Classification Mathématique (2020). 60G70, 62G32. Financement. Ce travail a bénéficié de l’appui financier du Secrétariat des Chaires de recherche du Canada, du Conseil de recherches en sciences naturelles et en génie du Canada, ainsi que de l’Institut Trottier pour la science et la politique publique. Manuscrit reçu le 9 juin 2020, révisé le 15 octobre 2020, accepté le 21 octobre 2020. Abridged English version A copula C is the distribution function of a random vector (U1, . . . ,Uk ) with uniform margins on the unit interval. Its diagonal section ∆(C ) is the distribution of max(U1, . . . ,Uk ). Several authors have considered the question of what can be said about C when ∆(C ) is known. In dimension k = 2, point-wise lower and upper bounds on the joint distribution C of a random pair (U ,V ) of exchangeable uniform random variables are given by the Fréchet–Hoeffding copulas. The latter correspond to the cases of comonotonic dependence in which either V = 1−U or V =U almost ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 1158 Christian Genest et Magid Sabbagh surely. Nelsen et al. [26] showed that when∆(C ) = δ is known and C is symmetric, it is possible to tighten these bounds. Specifically, one has Bδ(u, v) ≤C (u, v) ≤ Kδ(u, v), for all (u, v) ∈ [0,1], where Bδ(u, v) = (u ∧ v)− inf{t −δ(t ) : t ∈ [u ∧ v,u ∨ v]}, defines the Bertino copula [2] with diagonal section δ and Kδ(u, v) = u ∧ v ∧ {δ(u)+δ(v)}/2 is another copula with diagonal section δ which Fredricks and Nelsen [8] called a “diagonal copula.” Here and below, a ∧b = min(a,b) and a ∨b = max(a,b) for any reals a and b. In this paper, the extremal behavior of the copulas Bδ and Kδ is determined under suitable regularity assumptions on δ. It is first shown in Section 2 that if δ admits a left-sided derivative δ′ at 1, say d = δ′(1−), then Kδ belongs to the max domain of attraction of the copula with parameter θ = d/2 ∈ [1/2,1] defined, for all (u, v) ∈ [0,1]2, by Dθ(u, v) = u ∧ v ∧ (uv) . Further assume that there exits a real 2 ∈ (0,1) such that the map δ̂ : [0,1] → [0,1] defined at each t ∈ [0,1] by δ̂(t ) = t−δ(t ) is decreasing on the interval (2,1). Under this additional condition, it is shown in Section 3 that Bδ belongs to the max domain of attraction of the Cuadras–Augé copula with parameter θ = 2−d ∈ [0,1] defined, for all (u, v) ∈ [0,1]2, by Qθ(u, v) = (uv)1−θ(u ∧ v) . Various consequences of these results are mentioned in Section 4. First and foremost, if C is a symmetric bivariate copula with diagonal section δ meeting the above requirements, and if C∗ denotes its max attractor, which is assumed to exist, then for all (u, v) ∈ [0,1]2, Q2−d (u, v) ≤C∗(u, v) ≤ Dd/2(u, v). This string of inequalities immediately entails that the upper-tail dependence coefficient associated with C is given by Λ(C ) =Λ(C∗) =Λ(Q2−d ) =Λ(Dd/2) = 2−d . Moreover, if C∗ is symmetric with upper-tail dependence coefficientΛ(C∗) =λ, say, and if ρ(C∗) and τ(C∗) respectively denote the values of Spearman’s rho and Kendall’s tau associated with C∗, then 3λ/(4−λ) ≤ ρ(C∗) ≤ 3λ(8−5λ)/(4−λ)2 and λ/(2−λ) ≤ τ(C∗) ≤λ. These bounds settle a question raised in [22], which Jaworski [18] recently solved differently. Proposition 4 in Section 5 then shows how the symmetry assumption on C can be relaxed. Finally, Section 6 comments briefly on possible extensions to arbitrary dimension k > 2. It is pointed out there that the search for a lower bound is hindered by the fact that the k-variate extension of the bivariate Bertino copula is generally not a distribution unless the diagonal section is Lipschitz increasing of degree k/(k−1), as reported by Arias-García et al. [1]. In contrast, the k-variate extension of the diagonal copula introduced by Jaworski [17] does have a max attractor under the same assumptions as in the bivariate case. See Proposition 5 for details.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comportement extrémal des copules diagonales et de Bertino\",\"authors\":\"Christian Genest, M. Sabbagh\",\"doi\":\"10.5802/CRMATH.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximal attractors of bivariate diagonal and Bertino copulas are determined under suitable regularity conditions. Some consequences of these facts are drawn, namely bounds on the maximal attractor of a symmetric copula with a given diagonal section, and bounds on Spearman’s rho and Kendall’s tau for an exchangeable extreme-value copula whose upper-tail dependence coefficient is known. Some of these results are then extended to the case of arbitrary bivariate copulas and to multivariate copulas. Classification Mathématique (2020). 60G70, 62G32. Financement. Ce travail a bénéficié de l’appui financier du Secrétariat des Chaires de recherche du Canada, du Conseil de recherches en sciences naturelles et en génie du Canada, ainsi que de l’Institut Trottier pour la science et la politique publique. Manuscrit reçu le 9 juin 2020, révisé le 15 octobre 2020, accepté le 21 octobre 2020. Abridged English version A copula C is the distribution function of a random vector (U1, . . . ,Uk ) with uniform margins on the unit interval. Its diagonal section ∆(C ) is the distribution of max(U1, . . . ,Uk ). Several authors have considered the question of what can be said about C when ∆(C ) is known. In dimension k = 2, point-wise lower and upper bounds on the joint distribution C of a random pair (U ,V ) of exchangeable uniform random variables are given by the Fréchet–Hoeffding copulas. The latter correspond to the cases of comonotonic dependence in which either V = 1−U or V =U almost ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 1158 Christian Genest et Magid Sabbagh surely. Nelsen et al. [26] showed that when∆(C ) = δ is known and C is symmetric, it is possible to tighten these bounds. Specifically, one has Bδ(u, v) ≤C (u, v) ≤ Kδ(u, v), for all (u, v) ∈ [0,1], where Bδ(u, v) = (u ∧ v)− inf{t −δ(t ) : t ∈ [u ∧ v,u ∨ v]}, defines the Bertino copula [2] with diagonal section δ and Kδ(u, v) = u ∧ v ∧ {δ(u)+δ(v)}/2 is another copula with diagonal section δ which Fredricks and Nelsen [8] called a “diagonal copula.” Here and below, a ∧b = min(a,b) and a ∨b = max(a,b) for any reals a and b. In this paper, the extremal behavior of the copulas Bδ and Kδ is determined under suitable regularity assumptions on δ. It is first shown in Section 2 that if δ admits a left-sided derivative δ′ at 1, say d = δ′(1−), then Kδ belongs to the max domain of attraction of the copula with parameter θ = d/2 ∈ [1/2,1] defined, for all (u, v) ∈ [0,1]2, by Dθ(u, v) = u ∧ v ∧ (uv) . Further assume that there exits a real 2 ∈ (0,1) such that the map δ̂ : [0,1] → [0,1] defined at each t ∈ [0,1] by δ̂(t ) = t−δ(t ) is decreasing on the interval (2,1). Under this additional condition, it is shown in Section 3 that Bδ belongs to the max domain of attraction of the Cuadras–Augé copula with parameter θ = 2−d ∈ [0,1] defined, for all (u, v) ∈ [0,1]2, by Qθ(u, v) = (uv)1−θ(u ∧ v) . Various consequences of these results are mentioned in Section 4. First and foremost, if C is a symmetric bivariate copula with diagonal section δ meeting the above requirements, and if C∗ denotes its max attractor, which is assumed to exist, then for all (u, v) ∈ [0,1]2, Q2−d (u, v) ≤C∗(u, v) ≤ Dd/2(u, v). This string of inequalities immediately entails that the upper-tail dependence coefficient associated with C is given by Λ(C ) =Λ(C∗) =Λ(Q2−d ) =Λ(Dd/2) = 2−d . Moreover, if C∗ is symmetric with upper-tail dependence coefficientΛ(C∗) =λ, say, and if ρ(C∗) and τ(C∗) respectively denote the values of Spearman’s rho and Kendall’s tau associated with C∗, then 3λ/(4−λ) ≤ ρ(C∗) ≤ 3λ(8−5λ)/(4−λ)2 and λ/(2−λ) ≤ τ(C∗) ≤λ. These bounds settle a question raised in [22], which Jaworski [18] recently solved differently. Proposition 4 in Section 5 then shows how the symmetry assumption on C can be relaxed. Finally, Section 6 comments briefly on possible extensions to arbitrary dimension k > 2. It is pointed out there that the search for a lower bound is hindered by the fact that the k-variate extension of the bivariate Bertino copula is generally not a distribution unless the diagonal section is Lipschitz increasing of degree k/(k−1), as reported by Arias-García et al. [1]. In contrast, the k-variate extension of the diagonal copula introduced by Jaworski [17] does have a max attractor under the same assumptions as in the bivariate case. See Proposition 5 for details.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在适当的正则性条件下,确定了二元对角和Bertino联结的最大吸引子。给出了这些事实的一些结果,即具有给定对角线截面的对称联结的最大吸引子的界,以及上尾相关系数已知的可交换极值联结的Spearman的rho和Kendall的tau的界。然后将其中的一些结果推广到任意二元copula和多元copula的情况。分类mathassimatique(2020)。62年60 g70 g32。Financement。加拿大研究委员会主席、加拿大自然科学研究委员会主席、加拿大公共政治与科学研究所主席、加拿大公共政治与科学研究所主席。2020年6月9日复稿,2020年10月15日复稿,2020年10月21日收稿。A copula C是随机向量(U1,…)的分布函数。,Uk),在单位间隔上具有均匀的边距。其对角线截面∆(C)为max(U1,…)的分布。英国)。几位作者考虑了当∆(C)已知时,对C能说些什么。在k = 2维,可交换一致随机变量随机对(U,V)的联合分布C的点向下界和上界由fr切特-霍夫丁公式给出。后者对应于V = 1−U或V =U几乎为共单调依赖的情况,ISSN(电子版):1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 1158 Christian Genest et Magid Sabbagh肯定。Nelsen等人[26]表明,当∆(C) = δ已知且C是对称的时,可以收紧这些界限。具体来说,有Bδ(u, v)≤C (u, v)≤Kδ(u, v),对于所有(u, v)∈[0,1],其中Bδ(u, v) = (u∧v)−inf{t−δ(t): t∈[u∧v,u∨v]},定义了具有对角截面δ的Bertino copula [2], Kδ(u, v) = u∧v∧{δ(u)+δ(v)}/2是另一个具有对角截面δ的copula, Fredricks和Nelsen[8]称之为“对角copula”。对于任意实数a和b, a∧b = min(a,b)和a∨b = max(a,b)。本文在δ上适当的正则性假设下,确定了copulbδ和Kδ的极值性。在第2节中首先证明,如果δ在1处有左导数δ ',即d = δ '(1−),则Kδ属于参数θ = d/2∈[1/2,1]的联结函数的最大吸引域,对于所有(u, v)∈[0,1]2,由Dθ(u, v) = u∧v∧(uv)定义。进一步假设存在一个实数2∈(0,1),使得映射δ δ:[0,1]→[0,1]在每个t∈[0,1]处由δ δ(t) = t - δ(t)定义在区间(2,1)上递减。在此附加条件下,在第3节中证明了Bδ属于参数θ = 2−d∈[0,1]的cuadras - aug copula的最大吸引域,对于所有(u, v)∈[0,1]2,定义为Qθ(u, v) = (uv)1−θ(u∧v)。这些结果的各种后果将在第4节中提到。首先,如果C是一个对角截面δ满足上述要求的对称二元copula,且C∗表示它的最大吸引子,且假设存在,则对于所有(u, v)∈[0,1]2,Q2−d (u, v)≤C∗(u, v)≤Dd/2(u, v)。这串不等式立即推导出与C相关的上尾相关系数为Λ(C) =Λ(C∗)=Λ(Q2−d) =Λ(Dd/2) = 2 - d。此外,如果C∗对称且具有上尾依赖性coefficientΛ(C∗)=λ,且ρ(C∗)和τ(C∗)分别表示与C∗相关的Spearman 's rho和Kendall 's tau的值,则3λ/(4−λ)≤ρ(C∗)≤3λ(8−5λ)/(4−λ)2和λ/(2−λ)≤τ(C∗)≤λ。这些边界解决了[22]中提出的一个问题,Jaworski[18]最近以不同的方式解决了这个问题。然后,第5节中的命题4展示了如何放宽C上的对称性假设。最后,第6节简要说明了对任意维度k > 2的可能扩展。文中指出,二元Bertino copula的k变量扩展通常不是一个分布,除非对角线部分是k/(k−1)次的Lipschitz增量,如Arias-García等人[1]所报道的那样,这阻碍了下界的搜索。相反,由Jaworski[17]引入的k变量对角copula的扩展在与二元情况相同的假设下确实具有最大吸引子。详见提案5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Comportement extrémal des copules diagonales et de Bertino
The maximal attractors of bivariate diagonal and Bertino copulas are determined under suitable regularity conditions. Some consequences of these facts are drawn, namely bounds on the maximal attractor of a symmetric copula with a given diagonal section, and bounds on Spearman’s rho and Kendall’s tau for an exchangeable extreme-value copula whose upper-tail dependence coefficient is known. Some of these results are then extended to the case of arbitrary bivariate copulas and to multivariate copulas. Classification Mathématique (2020). 60G70, 62G32. Financement. Ce travail a bénéficié de l’appui financier du Secrétariat des Chaires de recherche du Canada, du Conseil de recherches en sciences naturelles et en génie du Canada, ainsi que de l’Institut Trottier pour la science et la politique publique. Manuscrit reçu le 9 juin 2020, révisé le 15 octobre 2020, accepté le 21 octobre 2020. Abridged English version A copula C is the distribution function of a random vector (U1, . . . ,Uk ) with uniform margins on the unit interval. Its diagonal section ∆(C ) is the distribution of max(U1, . . . ,Uk ). Several authors have considered the question of what can be said about C when ∆(C ) is known. In dimension k = 2, point-wise lower and upper bounds on the joint distribution C of a random pair (U ,V ) of exchangeable uniform random variables are given by the Fréchet–Hoeffding copulas. The latter correspond to the cases of comonotonic dependence in which either V = 1−U or V =U almost ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 1158 Christian Genest et Magid Sabbagh surely. Nelsen et al. [26] showed that when∆(C ) = δ is known and C is symmetric, it is possible to tighten these bounds. Specifically, one has Bδ(u, v) ≤C (u, v) ≤ Kδ(u, v), for all (u, v) ∈ [0,1], where Bδ(u, v) = (u ∧ v)− inf{t −δ(t ) : t ∈ [u ∧ v,u ∨ v]}, defines the Bertino copula [2] with diagonal section δ and Kδ(u, v) = u ∧ v ∧ {δ(u)+δ(v)}/2 is another copula with diagonal section δ which Fredricks and Nelsen [8] called a “diagonal copula.” Here and below, a ∧b = min(a,b) and a ∨b = max(a,b) for any reals a and b. In this paper, the extremal behavior of the copulas Bδ and Kδ is determined under suitable regularity assumptions on δ. It is first shown in Section 2 that if δ admits a left-sided derivative δ′ at 1, say d = δ′(1−), then Kδ belongs to the max domain of attraction of the copula with parameter θ = d/2 ∈ [1/2,1] defined, for all (u, v) ∈ [0,1]2, by Dθ(u, v) = u ∧ v ∧ (uv) . Further assume that there exits a real 2 ∈ (0,1) such that the map δ̂ : [0,1] → [0,1] defined at each t ∈ [0,1] by δ̂(t ) = t−δ(t ) is decreasing on the interval (2,1). Under this additional condition, it is shown in Section 3 that Bδ belongs to the max domain of attraction of the Cuadras–Augé copula with parameter θ = 2−d ∈ [0,1] defined, for all (u, v) ∈ [0,1]2, by Qθ(u, v) = (uv)1−θ(u ∧ v) . Various consequences of these results are mentioned in Section 4. First and foremost, if C is a symmetric bivariate copula with diagonal section δ meeting the above requirements, and if C∗ denotes its max attractor, which is assumed to exist, then for all (u, v) ∈ [0,1]2, Q2−d (u, v) ≤C∗(u, v) ≤ Dd/2(u, v). This string of inequalities immediately entails that the upper-tail dependence coefficient associated with C is given by Λ(C ) =Λ(C∗) =Λ(Q2−d ) =Λ(Dd/2) = 2−d . Moreover, if C∗ is symmetric with upper-tail dependence coefficientΛ(C∗) =λ, say, and if ρ(C∗) and τ(C∗) respectively denote the values of Spearman’s rho and Kendall’s tau associated with C∗, then 3λ/(4−λ) ≤ ρ(C∗) ≤ 3λ(8−5λ)/(4−λ)2 and λ/(2−λ) ≤ τ(C∗) ≤λ. These bounds settle a question raised in [22], which Jaworski [18] recently solved differently. Proposition 4 in Section 5 then shows how the symmetry assumption on C can be relaxed. Finally, Section 6 comments briefly on possible extensions to arbitrary dimension k > 2. It is pointed out there that the search for a lower bound is hindered by the fact that the k-variate extension of the bivariate Bertino copula is generally not a distribution unless the diagonal section is Lipschitz increasing of degree k/(k−1), as reported by Arias-García et al. [1]. In contrast, the k-variate extension of the diagonal copula introduced by Jaworski [17] does have a max attractor under the same assumptions as in the bivariate case. See Proposition 5 for details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信