Chuan Hu, Guixia Kang, Beibei Hou, Yiyuan Ma, F. Labeau, Zichen Su
{"title":"Acu-Net:用于多发性硬化症病灶分割的三维注意上下文U-Net","authors":"Chuan Hu, Guixia Kang, Beibei Hou, Yiyuan Ma, F. Labeau, Zichen Su","doi":"10.1109/ICASSP40776.2020.9054616","DOIUrl":null,"url":null,"abstract":"Multiple Sclerosis (MS) lesion segmentation from MR images is important for neuroimaging analysis. MS is diffuse, multifocal, and tend to involve peripheral brain structures such as the white matter, corpus callosum, and brainstem. Recently, U-Net has made great achievements in medical image segmentation area. However, the insufficiently use of context information and feature representation, makes it fail to achieve segmentation of MS lesions accurately. To solve the problem, 3D attention context U-Net (ACU-Net) is proposed for MS lesion segmentation in this paper. The proposed ACU-Net includes 3D spatial attention block, which is used to enrich spatial details and feature representation of lesion in the decoding stage. Furthermore, in the encoding and decoding stage of the network, 3D context guided module is designed for guiding local information and surrounding information. The proposed ACU-Net was evaluated on the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, and it achieved superior performance compared to latest approaches.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"40 1","pages":"1384-1388"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Acu-Net: A 3D Attention Context U-Net for Multiple Sclerosis Lesion Segmentation\",\"authors\":\"Chuan Hu, Guixia Kang, Beibei Hou, Yiyuan Ma, F. Labeau, Zichen Su\",\"doi\":\"10.1109/ICASSP40776.2020.9054616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple Sclerosis (MS) lesion segmentation from MR images is important for neuroimaging analysis. MS is diffuse, multifocal, and tend to involve peripheral brain structures such as the white matter, corpus callosum, and brainstem. Recently, U-Net has made great achievements in medical image segmentation area. However, the insufficiently use of context information and feature representation, makes it fail to achieve segmentation of MS lesions accurately. To solve the problem, 3D attention context U-Net (ACU-Net) is proposed for MS lesion segmentation in this paper. The proposed ACU-Net includes 3D spatial attention block, which is used to enrich spatial details and feature representation of lesion in the decoding stage. Furthermore, in the encoding and decoding stage of the network, 3D context guided module is designed for guiding local information and surrounding information. The proposed ACU-Net was evaluated on the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, and it achieved superior performance compared to latest approaches.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"40 1\",\"pages\":\"1384-1388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acu-Net: A 3D Attention Context U-Net for Multiple Sclerosis Lesion Segmentation
Multiple Sclerosis (MS) lesion segmentation from MR images is important for neuroimaging analysis. MS is diffuse, multifocal, and tend to involve peripheral brain structures such as the white matter, corpus callosum, and brainstem. Recently, U-Net has made great achievements in medical image segmentation area. However, the insufficiently use of context information and feature representation, makes it fail to achieve segmentation of MS lesions accurately. To solve the problem, 3D attention context U-Net (ACU-Net) is proposed for MS lesion segmentation in this paper. The proposed ACU-Net includes 3D spatial attention block, which is used to enrich spatial details and feature representation of lesion in the decoding stage. Furthermore, in the encoding and decoding stage of the network, 3D context guided module is designed for guiding local information and surrounding information. The proposed ACU-Net was evaluated on the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, and it achieved superior performance compared to latest approaches.