C. Bull, N. Funnell, C. Pulham, W. G. Marshall, D. Allan
{"title":"磷酸的一种新型高压多晶体","authors":"C. Bull, N. Funnell, C. Pulham, W. G. Marshall, D. Allan","doi":"10.1107/S205252061701441X","DOIUrl":null,"url":null,"abstract":"The high-pressure structural behaviour of phosphoric acid is described. A compression study of the monoclinic phase, using neutron powder diffraction and X-ray single-crystal diffraction, shows that it converts to a previously unobserved orthorhombic phase on decompression. Compression of this new phase is reported up to 6.3 GPa. The orthorhombic phase is found to be more efficiently packed, with reduced void space, resulting in a larger bulk modulus. Molecule–molecule interaction energies reveal a more extensive network of increased attractive forces in the orthorhombic form relative to the monoclinic form, suggesting greater thermodynamic stability.","PeriodicalId":6887,"journal":{"name":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","volume":"59 1","pages":"1068-1074"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new high‐pressure polymorph of phosphoric acid\",\"authors\":\"C. Bull, N. Funnell, C. Pulham, W. G. Marshall, D. Allan\",\"doi\":\"10.1107/S205252061701441X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high-pressure structural behaviour of phosphoric acid is described. A compression study of the monoclinic phase, using neutron powder diffraction and X-ray single-crystal diffraction, shows that it converts to a previously unobserved orthorhombic phase on decompression. Compression of this new phase is reported up to 6.3 GPa. The orthorhombic phase is found to be more efficiently packed, with reduced void space, resulting in a larger bulk modulus. Molecule–molecule interaction energies reveal a more extensive network of increased attractive forces in the orthorhombic form relative to the monoclinic form, suggesting greater thermodynamic stability.\",\"PeriodicalId\":6887,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"volume\":\"59 1\",\"pages\":\"1068-1074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S205252061701441X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S205252061701441X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The high-pressure structural behaviour of phosphoric acid is described. A compression study of the monoclinic phase, using neutron powder diffraction and X-ray single-crystal diffraction, shows that it converts to a previously unobserved orthorhombic phase on decompression. Compression of this new phase is reported up to 6.3 GPa. The orthorhombic phase is found to be more efficiently packed, with reduced void space, resulting in a larger bulk modulus. Molecule–molecule interaction energies reveal a more extensive network of increased attractive forces in the orthorhombic form relative to the monoclinic form, suggesting greater thermodynamic stability.