{"title":"基于隐性能量损失评估的能耗监测","authors":"B. Pleskach","doi":"10.47839/ijc.21.4.2784","DOIUrl":null,"url":null,"abstract":"This article presents a computational method for monitoring the energy consumption of technological systems with the assessment of their hidden energy losses caused by erroneous actions of personnel or equipment failures. Herewith, energy losses are calculated as the difference between the actual energy consumed and the minimum energy required to conduct the process in all operating modes. The minimum required energy is determined by the machine learning method based on stationary consumption precedents. Two approaches to the implementation of energy consumption monitoring with the assessment of hidden energy losses are considered – hardware and software. The hardware approach is based on the preliminary definition of normative, or minimum specific energy consumption in each technological mode. The software approach is based on the modeling of stationary areas of energy consumption in the form of precedents and their further analysis in the space of influential technological parameters. The paper notes the advantages and disadvantages of the proposed monitoring method, it is emphasized that the method is able to work with both linear and non-linear functions of energy dependence on the parameters of the technological process. It is noted in the paper that the advantage of the proposed method is the automated construction of the minimum energy function.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy Consumption Monitoring with Evaluation of Hidden Energy Losses\",\"authors\":\"B. Pleskach\",\"doi\":\"10.47839/ijc.21.4.2784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a computational method for monitoring the energy consumption of technological systems with the assessment of their hidden energy losses caused by erroneous actions of personnel or equipment failures. Herewith, energy losses are calculated as the difference between the actual energy consumed and the minimum energy required to conduct the process in all operating modes. The minimum required energy is determined by the machine learning method based on stationary consumption precedents. Two approaches to the implementation of energy consumption monitoring with the assessment of hidden energy losses are considered – hardware and software. The hardware approach is based on the preliminary definition of normative, or minimum specific energy consumption in each technological mode. The software approach is based on the modeling of stationary areas of energy consumption in the form of precedents and their further analysis in the space of influential technological parameters. The paper notes the advantages and disadvantages of the proposed monitoring method, it is emphasized that the method is able to work with both linear and non-linear functions of energy dependence on the parameters of the technological process. It is noted in the paper that the advantage of the proposed method is the automated construction of the minimum energy function.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.21.4.2784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.4.2784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Energy Consumption Monitoring with Evaluation of Hidden Energy Losses
This article presents a computational method for monitoring the energy consumption of technological systems with the assessment of their hidden energy losses caused by erroneous actions of personnel or equipment failures. Herewith, energy losses are calculated as the difference between the actual energy consumed and the minimum energy required to conduct the process in all operating modes. The minimum required energy is determined by the machine learning method based on stationary consumption precedents. Two approaches to the implementation of energy consumption monitoring with the assessment of hidden energy losses are considered – hardware and software. The hardware approach is based on the preliminary definition of normative, or minimum specific energy consumption in each technological mode. The software approach is based on the modeling of stationary areas of energy consumption in the form of precedents and their further analysis in the space of influential technological parameters. The paper notes the advantages and disadvantages of the proposed monitoring method, it is emphasized that the method is able to work with both linear and non-linear functions of energy dependence on the parameters of the technological process. It is noted in the paper that the advantage of the proposed method is the automated construction of the minimum energy function.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.