Agnese Brunzini, M. Mandolini, Steve Manieri, M. Germani, A. Mazzoli, M. Pagnoni, G. Iannetti, A. Modugno
{"title":"选择性激光烧结模具重建眼眶壁","authors":"Agnese Brunzini, M. Mandolini, Steve Manieri, M. Germani, A. Mazzoli, M. Pagnoni, G. Iannetti, A. Modugno","doi":"10.2316/P.2017.852-045","DOIUrl":null,"url":null,"abstract":"Diagnosis and treatment of orbital wall fractures are based on both physical examination and computed tomography scan of the orbital cavity. The present paper reports on the secondary reconstruction of the skeletal orbit following untreated orbital floor fracture in a patient wearing an ocular prosthesis because of an orbital trauma. A computer-assisted approach, based on anatomical modelling and custom-made mould fabrication via selective laser sintering, is proposed for manufacturing a preformed orbital implant. Such a procedure offers precise and predictable results for orbital reconstructions. This protocol proved an effective reduction of operating time, patient morbidity and a fast and low-cost preoperative planning procedure. Such an approach can be used for immediate and in-office manufacturing of custom implants in trauma and reconstructive patients.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"10 1","pages":"260-264"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Orbital wall reconstruction by selective laser sintered mould\",\"authors\":\"Agnese Brunzini, M. Mandolini, Steve Manieri, M. Germani, A. Mazzoli, M. Pagnoni, G. Iannetti, A. Modugno\",\"doi\":\"10.2316/P.2017.852-045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis and treatment of orbital wall fractures are based on both physical examination and computed tomography scan of the orbital cavity. The present paper reports on the secondary reconstruction of the skeletal orbit following untreated orbital floor fracture in a patient wearing an ocular prosthesis because of an orbital trauma. A computer-assisted approach, based on anatomical modelling and custom-made mould fabrication via selective laser sintering, is proposed for manufacturing a preformed orbital implant. Such a procedure offers precise and predictable results for orbital reconstructions. This protocol proved an effective reduction of operating time, patient morbidity and a fast and low-cost preoperative planning procedure. Such an approach can be used for immediate and in-office manufacturing of custom implants in trauma and reconstructive patients.\",\"PeriodicalId\":6635,\"journal\":{\"name\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"volume\":\"10 1\",\"pages\":\"260-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.852-045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Orbital wall reconstruction by selective laser sintered mould
Diagnosis and treatment of orbital wall fractures are based on both physical examination and computed tomography scan of the orbital cavity. The present paper reports on the secondary reconstruction of the skeletal orbit following untreated orbital floor fracture in a patient wearing an ocular prosthesis because of an orbital trauma. A computer-assisted approach, based on anatomical modelling and custom-made mould fabrication via selective laser sintering, is proposed for manufacturing a preformed orbital implant. Such a procedure offers precise and predictable results for orbital reconstructions. This protocol proved an effective reduction of operating time, patient morbidity and a fast and low-cost preoperative planning procedure. Such an approach can be used for immediate and in-office manufacturing of custom implants in trauma and reconstructive patients.